Math, asked by Srynu2016, 11 months ago

solve this question​

Attachments:

Answers

Answered by Aloi99
7

Given:-

→p(x)=2x²+5x+k

→(α+β)²-αβ=24

\rule{200}{1}

To Find:-

→The Value of k?

\rule{200}{1}

AnsWer:-

♦a=2,b=5,c=k

→α+β= \frac{-b}{a}

→α+β= \frac{-(5)}{2}

→α+β= \frac{-5}{2} –(1)

•αβ= \frac{c}{a}

•αβ= \frac{k}{2} –(2)

๛Using (1) & (2) in Given๛

→(α+β)²-αβ=24

→( \frac{-5}{2} )²- \frac{k}{2} =24

 \frac{25}{4} - \frac{2 \times k}{2 \times 2} =24

 \frac{25-2k}{4} =24

→25-2k=24×4

→25-2k=96

→-2k=96-25

→-2k=71

-k= \frac{71}{2}

k= \frac{\cancel{-71}}{\cancel{2}}

k=-35.5

\rule{200}{2}

Answered by Anonymous
4

Answer....

⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️ ⏺️

2 {x}^{2}  + 5x + k \\  \\  ................. \\  \\  {(\alpha  +  \beta )}^{2}  -  \alpha  \beta  = 24 \\  \\  =  > { ( \frac{ - b}{a} )}^{2}  -  (\frac{c}{a} ) = 24 \\  \\  =  > { ( \frac{ - 5}{2} )}^{2}  -  (\frac{k}{2} ) = 24 \\  \\  =  >  \frac{25}{4}  -  \frac{k}{2}  = 24 \\  \\  =  >  \frac{25 - 2k}{4}  = 24 \\  \\  =  > 25 - 2k = 96 \\  \\ =  >  - 2k = 96 - 25 \\  \\  =  >  - 2k = 71 \\  \\  =  > k =  \frac{ - 71}{2}

➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖ ➖

Hope you got it

Similar questions