solve this question.
Attachments:
Answers
Answered by
6
- a + b + c = 14
- a² + b² + c² = 60
- The value of a³ + b³ +c³ -3abc
We have,
a +b +c = 14
Squaring both sides
(a + b + c)² = (14)²
We know that,
(a +b +c)² = (a² + b² + c² +2ab +2bc +2ca)
(a +b +c)² = [ a² +b² +c² +2(ab +bc +ca) ]
So,
(a + b + c)² = (14)²
[ a² +b² +c² +2(ab +bc +ca) ] = 196
Putting the value
60 +2(ab + bc + ca) = 196
2(ab +bc +ca) = 196 -60
2(ab +bc +ca) = 136
ab + bc + ca = 136/2
ab + bc + ca = 68
Now,
We also know that
a³ +b³ +c³ -3abc = (a +b +c)(a² +b² +c² -ab -bc -ca)
==> a³ +b³ +c³ -3abc = (a+b+c)[ a²+b²+c²- (ab +bc +ca) ]
Substituting values
a³ +b³ +c³ -3abc = (14) [60 - (68)]
a³ +b³ +c³ -3abc = 14 (60 -68)
a³ +b³ +c³ -3abc = 14 (-8)
Similar questions