Physics, asked by aaravshrivastwa, 8 months ago

Solve This Question. ​

Attachments:

Answers

Answered by MOSFET01
15

Solution :

Let us draw a free body diagram of above system :

From the above figure PQW is 90°

PQY = 90° &  YQT_2\: = \: QT_{2}Y\: = \: 30^{\circ}

Now,

\angle{T_{2}QW} \: =\: 90^{\circ}\: +\: 30^{\circ}

\angle{T_{2}QW}\: =\: 120^{\circ}

Now, PQR

\angle{T_{2}QT_{1}} \: =\: 360^{\circ}\: - \: (120^{\circ}\: +\: 90^{\circ})

\angle{T_{2}QT_{1}} \: =\: 150^{\circ}

By applying Lamis theorem in system :

\dfrac{T_1}{sin\:\alpha} \: =\: \dfrac{T_2}{sin\:\beta}\: =\: \dfrac{W}{sin\:\gamma}

 T_1\: =\: Tension \:in \:string\: one

 T_2\: =\: Tension\: in \:string\: second

 W\: =\: Weight

 \dfrac{T_1}{sin\:120} \: =\: \dfrac{T_2}{sin\:90}\: =\: \dfrac{70}{sin\:150}

W = Mg = 70 kg × 10 m/sec = 70 kg.m/sec

W = 70 N

Take System 1

\dfrac{T_1}{sin\:120}\: =\: \dfrac{7}{sin\:150}

\dfrac{T_1}{\dfrac{\sqrt{3}}{2}} \: =\:\dfrac{70}{\dfrac{1}{2}}

\dfrac{T_1}{\dfrac{\sqrt{3}}{\cancel{2}}} \: =\:\dfrac{70}{\dfrac{1}{\cancel{2}}}

 \dfrac{T_1}{\sqrt{3}} \: =\:70

 T_1\: =\: 70\sqrt{3}\: N

Take system 2

\dfrac{T_2}{sin\:90} \: =\:\dfrac{70}{sin\:150}

\dfrac{T_2}{1} \: =\:\dfrac{70}{\dfrac{1}{2}}

\dfrac{T_2}{1} \: =\:\dfrac{70}{\dfrac{1}{2}}

\dfrac{T_2}{1} \: =\:2\times70

 T_2\: =\: 140\: N

Attachments:

RvChaudharY50: Awesome.
MOSFET01: thanks
Answered by ShivamKashyap08
17

Answer:

  • The Tension (T₁) in PQ is 70 √{3} N
  • The Tension (T₂) in QR is 140 N

Given:

  1. ∠ R = 30°
  2. ∠ PQS = 90°
  3. Let the Tension in PQ be T₁
  4. Let the Tension in QR be T₂

Explanation:

\rule{300}{1.5}

Firstly finding the ∠ PQR and ∠ RQS,

Now, we can see that,

" ∠ R and ∠ PQR form linear pair ",

Therefore,

∠ R + ∠ PQR = 180°

Substituting the values,

⇒ 30° + ∠ PQR = 180°

⇒ ∠ PQR = 180° - 30°

⇒ ∠ PQR = 150°

∠ PQR = 150°

We got the ∠ PQR angle.

\rule{300}{1.5}

\rule{300}{1.5}

Now, we know that all angles add up to 360°

Therefore,

∠ PQR + ∠ PQS + ∠ RQS = 360°

Substituting the values,

⇒ 150° + 90° + ∠ RQS = 360°

⇒ 240° + ∠ RQS = 360°

⇒ ∠ RQS = 360° - 240°

⇒ ∠ RQS = 120°

∠ RQS = 120°

We got the ∠ RQS angle.

\rule{300}{1.5}

\rule{300}{1.5}

From Lami's theorem's we know,

\large \bigstar\;\underline{\boxed{\sf \dfrac{F_{1}}{\sin \alpha} = \dfrac{F_{2}}{\sin \beta} = \dfrac{F_{3}}{\sin \gamma}}}

Here, we need to know something,

1] F₁ will be the weight of the 7 Kg block, therefore, alpha will be opposite to it i.e. 150°.

2] F₂ will be the Tension in PQ, therefore, Beta will be opposite to it i.e. 120°.

3] F₃ will be the Tension in QR, therefore, gamma will be opposite to it i.e. 90°.

Substituting the values,

\displaystyle \longrightarrow \sf\dfrac{7\times 10}{\sin 150^{\circ}} = \dfrac{T_{1}}{\sin 120^{\circ}} = \dfrac{T_{2}}{\sin 90^{\circ}}\\\\\\\longrightarrow\sf \dfrac{70}{\sin 150^{\circ}} = \dfrac{T_{1}}{\sin 120^{\circ}} = \dfrac{T_{2}}{\sin 90^{\circ}}

Now,

Case-1

\displaystyle\longrightarrow\sf \dfrac{70}{\sin 150^{\circ}} = \dfrac{T_{1}}{\sin 120^{\circ}}\\\\\\\longrightarrow\sf \dfrac{70}{1/2}=\dfrac{T_{1}}{\sqrt{3}/2}\\\\\\\longrightarrow\sf \dfrac{2\times 70}{1}=\dfrac{T_{1}\times 2}{\sqrt{3}}\\\\\\\longrightarrow\sf T_{1}=\dfrac{2\times 70\times \sqrt{3}}{2}\\\\\\\longrightarrow\sf T_{1}=70\sqrt{3}\\\\\\\longrightarrow \large{\underline{\boxed{\red{\sf T_{1}=70\sqrt{3}\;N}}}}

The Tension (T₁) in PQ is 70 √{3} N.

\\

Case-2

\displaystyle\longrightarrow\sf \dfrac{70}{\sin 150^{\circ}} = \dfrac{T_{2}}{\sin 90^{\circ}}\\\\\\\longrightarrow\sf \dfrac{70}{1/2}=\dfrac{T_{2}}{1}\\\\\\\longrightarrow\sf \dfrac{2\times 70}{1}=\dfrac{T_{2}}{1}\\\\\\\longrightarrow\sf T_{2}=\dfrac{2\times 70\times 1}{1}\\\\\\\longrightarrow\sf T_{2}=140\\\\\\\longrightarrow \large{\underline{\boxed{\red{\sf T_{2}=140\;N}}}}

The Tension (T₂) in QR is 140 N.

Refer the attachment for diagram.

\rule{300}{1.5}

Attachments:

RvChaudharY50: Splendid.
ShivamKashyap08: :)
Similar questions