Math, asked by Anonymous, 11 months ago

Solve this question (◍•ᴗ•◍)❤​

Attachments:

Answers

Answered by Anonymous
13

Question :

If \alpha and \beta are the zeros of the polynomial P(x) = Kx² + 4x + 4 such that \alpha^2+\beta^2=24 , find the value of K.

Given :

  • P(x) = Kx² + 4x + 4
  • \sf{\alpha^2+\beta^2=24}

To find :

  • Value of "K".

Solution :

\sf{\alpha^2+\beta^2=24.............(1)}

\sf{\alpha\: and\:\beta\:are\:the\: zeros\:of\:the\: polynomial.}

★ Compare Kx² + 4x +4 = 0 with ax² + bx + c = 0.

Where,

  • a = K
  • b = 4
  • c = 4

We know,

  • Sum of zeros = - b/a
  • Product of zeros = c/a

Here,

\sf{Sum\:of\: zeros (\alpha+\beta)=\dfrac{-4}{K}}

\sf{Product\:of\; zeros (\alpha\beta)=\dfrac{4}{K}}

Now , take eq (1)

\implies\sf{\alpha^2+\beta^2=24}

\implies\sf{(\alpha+\beta)^2-2\alpha\beta=24}

  • Put values .

\implies\sf{(\dfrac{-4}{K})^2-2\times\dfrac{4}{K}=24}

\implies\sf{\dfrac{16}{K^2}-\dfrac{8}{K}=24}

\implies\sf{\dfrac{16-8K^2}{K^2}=24}

\implies\sf{24K^2=16-8K}

\implies\sf{24K^2+8K-16=0}

\implies\sf{8(3K^2+K-2)=0}

\implies\sf{3K^2+K-2=0}

\implies\sf{3K^2+(3-2)K-2=0}

\implies\sf{3K^2+3K-2K-2=0}

\implies\sf{3K(K+1)-2(K+1)=0}

\implies\sf{(K+1)(3K-2)=0}

Either,

K+1= 0

→ K = -1

Or,

3K - 2 = 0

→ 3K = 2

→ K = 2/3

Therefore, the value of K is -1 or 2/3.

Answered by Anonymous
24

Given

\leadsto\bf\red{kx^2+4x+4}

\leadsto \alpha^2+\beta^2=24

\rule{150}2

To find

→ value of "K"=?

we know,

\leadsto\alpha \: and\:  \beta are the zeroes of the polynomial.

\leadsto\alpha^2+\beta^2=24--------eq(1)

On comparing \leadsto kx^2+4x+4=0 with ax^{2}+bx+c=0

so,

\implies a=K\\ \implies b=4 \\ \implies c=4

And,

Sum of the zeroes \alpha+\beta=\frac{-b}{a}

product of Zeroes \alpha\beta=\frac{c}{a}

\leadsto\frac{-b}{a}=\frac{-4}{k}

\leadsto\frac{c}{a}=\frac{4}{k}

\rule{300}2

\longrightarrow \alpha^2+\beta^2=24----eq(1)

\longrightarrow (\alpha+\beta)-2\alpha\beta=24

  • using identity (a+b)^2

According to question

\leadsto (\frac{-4}{k})^2-2×\frac{4}{k}=24\\ \leadsto \frac{16}{k^2}-\frac{8}{k}=24\\\leadsto\frac{16-8k^2}{k^2}=24\\ \leadsto 24k^2=16-8k\\ \leadsto 24k^2+8k-16=0\\ \leadsto 8(3k^2+k-2)=0\\ \leadsto 3k^2+k-2=0\\ \leadsto 3k^2+3k-2k-2=0\\ \leadsto 3k(k+1)-2(k+1)=0\\ \leadsto(k+1)(3k-2)=0\\ \leadsto k+1=0,3k-2=0\\ \leadsto k=-1, k=\frac{-2}{3}

\rule{150}2

Hence,

\huge\red{\fbox{\fbox{k=-1}}}&\huge\pink{\fbox{\fbox{k= -2/3} }}

Similar questions