Math, asked by ravina2330, 9 months ago

solve this question ​

Attachments:

Answers

Answered by BrainlyPopularman
8

TO FIND :

 \\ \:  \:  \:  \left|\begin{array}{cc}\sf cos\:x & \sf\:sin\:x\\\sf\:-\:sin\:x & \sf\:cos\:x\end{array}\right|  = ? \\

SOLUTION :

• Let Determinant be –

 \\ \:  \implies  \: A = \left|\begin{array}{cc}\sf cos\:x & \sf\:sin\:x\\\sf\:-\:sin\:x & \sf\:cos\:x\end{array}\right|  \\

• We know that –

 \\ \:  \dashrightarrow  \: A = \left|\begin{array}{cc}\sf a_{11} & \sf a_{12}\\\sf\:a_{21} & \sf a_{22}\end{array}\right|  \\

• Then –

 \\ \:  \dashrightarrow  \sf A =a_{11}.a_{22} -a_{21}.a_{12} \\

• Here –

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{11} =  \cos x \\

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{12} =  \sin x \\

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{21} = - \sin x \\

 \\ \sf \:  \: { \huge{.}}  \:  \: a_{22} =  \cos x \\

• So that –

 \\ \:  \implies  \sf A =  ( \cos x).(\cos x) - ( \sin x)( -  \sin x) \\

 \\ \:  \implies  \sf A = \cos^{2} x +  \sin^{2}  x \\

 \\  \:  \: \:  \sf \because \:  \:  \:  \cos^{2} x +  \sin^{2}  x  = 1\\

 \\  \:  \: \:  \sf \therefore \:  \:  \:  \large{ \boxed{ \sf A= 1}}\\

 \\ \rule{220}{2} \\


Anonymous: Awesome !
Similar questions