Math, asked by Manishpaul, 1 year ago

solve this question.

Attachments:

Answers

Answered by Anonymous
3
please mark as brainlist
Attachments:

Manishpaul: Thanks a lot
Answered by rohitkumargupta
12
HELLO DEAR

sintheta (1+tant theta) + cos theta (1+cot theta)

=>
 \sin \alpha  (1 +   \frac{ \sin \alpha }{ \cos \alpha }) +  \cos \alpha (1 +  \frac{ \cos \alpha  }{ \sin \alpha } )  \\  =  > \sin \alpha  (  \frac{ \cos \alpha  + \sin \alpha }{ \cos \alpha }) +  \cos \alpha ( \frac{  \sin \alpha   + \cos \alpha  }{ \sin \alpha } )  \\   =  > ( \cos \alpha  +  \sin \alpha) ( \tan \alpha  +  \cot\alpha ) \\   =  > ( \cos \alpha  +  \sin \alpha)( \frac{ \sin \alpha }{ \cos \alpha   }  +  \frac{ \cos \alpha  }{ \sin \alpha  } ) \\  =  > ( \cos \alpha  +  \sin \alpha)( \frac{ { \sin }^{2} \alpha  +  { \cos}^{2}  \alpha  }{ \sin \alpha  \cos \alpha  } ) \\   =  >  \frac{( \cos \alpha  +  \sin \alpha)}{ \sin \alpha  \cos \alpha }   \\  =  >  \frac{ \cos( \alpha ) }{ \sin( \alpha )  \cos( \alpha ) }  +  \frac{ \sin( \alpha ) }{ \sin( \alpha )  \cos( \alpha ) }  \\  =  >  \frac{1}{ \sin( \alpha ) }  +  \frac{1}{ \cos( \alpha ) }  \\  =   >  \cosec( \alpha )  +  \sec( \alpha )
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions