Math, asked by vanshsharma6, 1 year ago

Solve this question;

2y < 4x - 6, x < 2y + 2

And plot a graph.

Answers

Answered by AbhijithPrakash
4

Answer:

y&lt;2x-3,\:y&gt;\dfrac{x-2}{2}\quad :\quad \begin{bmatrix}y&lt;2x-3\\ y&gt;\dfrac{x-2}{2}\end{bmatrix}\quad \mathrm{Unbounded}

Step-by-step explanation:

\begin{bmatrix}2y&lt;4x-6\\ x&lt;2y+2\end{bmatrix}

\black{\mathrm{Isolate}\:y\:\mathrm{for}\:2y&lt;4x-6}

2y&lt;4x-6

\gray{\mathrm{Divide\:both\:sides\:by\:}2}

\dfrac{2y}{2}&lt;\dfrac{4x}{2}-\dfrac{6}{2}

\gray{\mathrm{Simplify}}

y&lt;2x-3

\black{\mathrm{Isolate}\:y\:\mathrm{for}\:x&lt;2y+2}

x&lt;2y+2

\gray{\mathrm{Switch\:sides}}

2y+2&gt;x

\gray{\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}}

2y+2-2&gt;x-2

\gray{\mathrm{Simplify}}

2y&gt;x-2

\gray{\mathrm{Divide\:both\:sides\:by\:}2}

\dfrac{2y}{2}&gt;\dfrac{x}{2}-\dfrac{2}{2}

\gray{\mathrm{Simplify}}

y&gt;\dfrac{x-2}{2}

=\begin{bmatrix}y&lt;2x-3\\ y&gt;\dfrac{x-2}{2}\end{bmatrix}

\gray{\mathrm{1.\:Graph\:each\:inequality\:separately.}}

\gray{\mathrm{2.\:Choose\:a\:test\:point\:to\:determine\:which\:side\:of\:the\:line\:needs\:to\:be\:shaded.}}

\gray{\mathrm{3.\:The\:solution\:to\:the\:system\:will\:be\:the\:area\:where\:the\:shadings\:}}\gray{\mathrm{from\:each\:inequality\:overlap\:one\:another.}}

\gray{\mathrm{See\:graph\:below/above.}}

\begin{bmatrix}y&lt;2x-3\\ y&gt;\dfrac{x-2}{2}\end{bmatrix}\quad \mathrm{Unbounded}

Attachments:
Similar questions