Math, asked by shraddhaholikatti, 6 months ago

solve this question ​

Attachments:

Answers

Answered by Anonymous
1

Answer:

Given

 \sqrt{ \frac{ \sqrt{2}  + 1}{ \sqrt{2} - 1 } }

We have to use

 \sqrt{2}  = 1.4142

Now

 \sqrt{ \frac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1} }  \\  =  \sqrt{ \frac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 } \times  \frac{ \sqrt{2} + 1 }{ \sqrt{2} + 1 }  }  \\  =  \sqrt{ \frac{( \sqrt{2}  + 1) {}^{2} }{( \sqrt{2}) {}^{2}  - 1 {}^{2}  } }  \\  \sqrt{ \frac{( \sqrt{2}  + 1) {}^{2} }{(2 - 1)} }  \\  =  \sqrt{ \frac{( \sqrt{2} + 1) {}^{2}  }{1} }  \\  \sqrt{( \sqrt{2} + 1) {}^{2}  }  \\  = ( \sqrt{2}  + 1) {}^{2 \times  \frac{1}{2} }  \\  =  \sqrt{2}  + 1 \\  = 1.4142 + 1 \\  = 2.4142

Similar questions