solve this question
Answers
According to the Question:-
➭ P(x) = x⁴ - 6x³ - 26x² + 138x - 35
➭ x = 2 + √3 , x = 2 - √3
➭ (x - 2 - √3). (x - 2 + √3)
➭Using Identity:- a² - b² = (a + b) (a - b)
➭ Here a = (x - 2) & b = (√3)
➭ (x - 2)² - (√3)²
➭ Using Identity:- (a - b)² = a² - 2ab + b²
➭ x² - 4x + 4 - 3
➭ x² - 4x + 1
Now,
Dividing x⁴ - 6x³ - 26x² + 138x - 35 by x² - 4x + 1
Refer to the attachment:-
Quotient = x² - 2x - 35
Then By Middle Splitting the term..
★ x² - 2x - 35
➙ x² - 7x + 5x - 35
➙ x(x - 7) + 5(x - 7)
➙ (x - 7) (x + 5)
➙ x - 7 = 0 , x + 5 = 0
➙ x = 7 , x = - 5
Answer:
According to the Question:-
➭ P(x) = x⁴ - 6x³ - 26x² + 138x - 35
➭ x = 2 + √3 , x = 2 - √3
➭ (x - 2 - √3). (x - 2 + √3)
_____________________
Using Identity:-
➭ a² - b² = (a + b) (a - b)
➭ Here a = (x - 2) & b = (√3)
➭ (x - 2)² - (√3)²
Using Identity :-
➭ (a - b)² = a² - 2ab + b²
➭ x² - 4x + 4 - 3
➭ x² - 4x + 1
_____________________
Now,
Dividing
x⁴ - 6x³ - 26x² + 138x - 35 by x² - 4x + 1
Quotient = x² - 2x - 35
_____________________
Then By Middle term split
★ x² - 2x - 35
➙ x² - 7x + 5x - 35
➙ x(x - 7) + 5(x - 7)
➙ (x - 7) (x + 5)
➙ x - 7 = 0 , x + 5 = 0
➙ x = 7 , x = (-5)
_____________________
★ Hence,
7 and (-5) are the other zeros of this polynomial
_____________________