Math, asked by ANUDEEP10878, 4 hours ago

solve this question.​

Attachments:

Answers

Answered by Anonymous
1

f(x) =  \frac{ {x} }{ ({x}^{2}  +  {9}^{2}) ^{ \frac{3}{2} } }  \:  \:  \:  \:  \: f( \frac{a}{ \sqrt{2}  } ) = ?

 \bold{We  \: have \:  to \:  substitute  \: x =  \frac{a}{ \sqrt{2} } }

f( \frac{a}{ \sqrt{2} } ) =  \frac{ \frac{a}{ \sqrt{2} } }{( \frac{a}{ \sqrt{2 +  {a}^{2}} }) ^{ \frac{3}{2} } }

 \frac{a}{( \frac{ {a}^{2} }{2}  +  {a}^{2} ) {}^{ \frac{3}{2} } }

 =  >   \frac{\frac{a}{ \sqrt{2} } }{ \frac{( {a}^{2} + 2 {a}^{2} ) {}^{ \frac{3}{2} }  }{2} }  \:  \:  \:  \:  \:  =   >   \frac{ \frac{a}{2 \frac{1}{2} } }{ \frac{(3 {a)}^{ \frac{3}{2} } }{2 \frac{3}{2} } }

f( \frac{a}{ \sqrt{2} } ) =  \frac{a \times 2 \frac{3}{2} }{2  \frac{1}{2} (3 {a ^{2} )}^{ \frac{3}{2} } }

f( \frac{a}{ \sqrt{2} } )  = \frac{ a \times  {2}^{1 +  \frac{1}{2} } }{2 \frac{1}{2}  \: 3 \frac{3}{2}  \times  {a}^{2}  \times  \frac{3}{2} }

f( \frac{a}{ \sqrt{2} } ) =  \frac{a \times 2 \times 2\frac{1}{2} }{2 \frac{1}{2} \times 3 \times 3 \frac{1}{2}  \times  {a}^{3}  }

f( \frac{ {a}^{2} }{ \sqrt{2} } ) =  \frac{2a}{3 \sqrt{2 } {a}^{3}  }

f( \frac{a}{ \sqrt{2} } ) =  \frac{2a}{3 \sqrt{3} {a}^{3}  }

f( \frac{a}{ \sqrt{2} } ) =  \frac{2}{3 \sqrt{3} {a}^{3}  }

Similar questions