Math, asked by gc523739, 1 month ago

Solve this question..?​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

Let  \rm\:I=\int^{\frac{\pi}{2}}_{0}\cos^{2}(x)\:dx\:\:....(i)\\

 \implies\rm\:I=\int^{\frac{\pi}{2}}_{0}\cos^{2} \bigg( \frac{\pi}{2} +  0 - x \bigg)\:dx\\

 \implies\rm\:I=\int^{\frac{\pi}{2}}_{0}\cos^{2} \bigg( \frac{\pi}{2} - x \bigg)\:dx\\

 \implies\rm\:I=\int^{\frac{\pi}{2}}_{0}\sin^{2}( x)\:dx \:  \: ....(ii)\\

Adding (i) and (ii),

 \implies\rm\:2I=\int^{\frac{\pi}{2}}_{0}\cos^{2}( x)\:dx + \int^{\frac{\pi}{2}}_{0}\sin^{2}( x)\:dx\\

 \implies\rm\:2I=\int^{\frac{\pi}{2}}_{0}(\cos^{2}( x) + \sin^{2}( x))\:dx\\

 \implies\rm\:2I=\int^{\frac{\pi}{2}}_{0}(1)\:dx\\

 \implies\rm\:2I=\int^{\frac{\pi}{2}}_{0}\:dx\\

 \implies\rm\:2I= \bigg[ x \bigg]^{ \frac{\pi}{2} }_{0}   \\

 \implies\rm\:2I= \bigg[  \frac{\pi}{2}  - 0 \bigg] \\

 \implies\rm\:2I= \frac{\pi}{2}  \\

 \implies\rm\:I= \frac{\pi}{4}  \\

Similar questions