Math, asked by ankitupadhyay514, 1 day ago

solve this question ​

Attachments:

Answers

Answered by mathdude500
3

Given Question

If

\rm :\longmapsto\:u = log( {x}^{3} +  {y}^{3} -  {x}^{2}y -  {xy}^{2})

Prove that,

\rm :\longmapsto\:\dfrac{ {\partial }^{2}u}{ {\partial x}^{2} }  + 2\dfrac{ {\partial }^{2} u}{\partial x\partial y}  + \dfrac{ {\partial }^{2} u}{ {\partial y}^{2} }  = \dfrac{4}{ {(x + y)}^{2} }

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:u = log( {x}^{3} +  {y}^{3} -  {x}^{2}y -  {xy}^{2})

\rm :\longmapsto\:u = log[({x}^{3} +  {y}^{3}) - ({x}^{2}y + {xy}^{2})]

\rm :\longmapsto\:u = log[(x + y)( {x}^{2} - xy +  {y}^{2}) - xy(x + y)]

\rm :\longmapsto\:u = log[(x + y)( {x}^{2} - xy +  {y}^{2} - xy)]

\rm :\longmapsto\:u = log[(x + y)( {x}^{2} - 2xy +  {y}^{2})]

\rm :\longmapsto\:u = log[(x + y)({x - y)}^{2}]

\rm\implies \:u = log(x + y) + 2log(x - y)

On differentiating partially w. r. t. x, we get

\rm :\longmapsto\:\dfrac{\partial u}{\partial x}  = \dfrac{1}{x + y}  + \dfrac{2}{x - y}

On differentiating partially w. r. t. x, we get

\rm :\longmapsto\:\boxed{\tt{  \frac{ {\partial }^{2} u}{ {\partial x}^{2} } =  \frac{ - 1}{ {(x + y)}^{2} } -  \frac{2}{ {(x - y)}^{2} }}} -  - (1)

Again, Consider

\rm :\longmapsto\: \:u = log(x + y) + 2log(x - y)

On differentiating partially w. r. t. y, we get

\rm :\longmapsto\:\dfrac{\partial u}{\partial y} = \dfrac{1}{x + y}  - \dfrac{2}{x - y}

On differentiating partially w. r. t. y, we get

\rm :\longmapsto\:\boxed{\tt{  \frac{ {\partial }^{2} u}{ {\partial y}^{2} } =  \frac{ - 1}{ {(x + y)}^{2} } - \frac{2}{ {(x - y)}^{2} }}} -  -  - (2)

Now, we have

\rm :\longmapsto\:\dfrac{\partial u}{\partial x}  = \dfrac{1}{x + y}  + \dfrac{2}{x - y}

On differentiating partially w. r. t. y, we get

\rm :\longmapsto\:\boxed{\tt{ \dfrac{ {\partial }^{2} u}{\partial x\partial y} = \dfrac{ - 1}{ {(x + y)}^{2} } + \dfrac{2}{ {(x- y)}^{2} }}} -  -  - (3)

Now, Consider

\rm :\longmapsto\:\dfrac{ {\partial }^{2}u}{ {\partial x}^{2} }  + 2\dfrac{ {\partial }^{2} u}{\partial x\partial y}  + \dfrac{ {\partial }^{2} u}{ {\partial y}^{2} }

\rm \:  =  \:  - \dfrac{1}{ {(x + y)}^{2} }  - \dfrac{2}{ {(x - y)}^{2} }  - \dfrac{2}{ {(x + y)}^{2} } +  \dfrac{4}{ {(x - y)}^{2} } - \dfrac{1}{ {(x + y)}^{2} } - \dfrac{2}{ {(x - y)}^{2} }

\rm \:  =  \:  - \dfrac{4}{ {(x + y)}^{2} }

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\purple{\rm :\longmapsto\: \boxed{\tt{ {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2}}}} \\

\purple{\rm :\longmapsto\:\boxed{\tt{ log(xy) = logx \:  + \: logy}}} \\

\purple{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx}}} \\

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x}}}}

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}x =  1}}}

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}k =  0}}}

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} \frac{1}{x}  =   \frac{ - 1}{ {x}^{2} } }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions