Math, asked by Princy11, 1 year ago

solve this question
.....

Attachments:

Answers

Answered by ayushi4623
2
Hey buddy this is your answer.
Hope you understand it.
Attachments:
Answered by NidhraNair
5
✔️✔️In the above question we need to prove that :-

[ (CosA) / (1-TanA) ] + [ (SinA) / (1-CotA) ] = SinA + CosA



✔️✔️Let's start Sloving from LHS!



=[ (CosA) / (1-TanA) ] + [ (SinA) / (1-CotA) ]

=[ (CosA) / (1-SinA/CosA) ] + [ (SinA) / (1-CosA/SinA) ]

=[ (CosA) / {(CosA-SinA)/CosA} ] + [ (SinA) / {(SinA-CosA)/SinA} ]

=[ (Cos²A) / (CosA-SinA) ] + [ (Sin²A) / (SinA-CosA) ]

= [ (Cos²A) / -(SinA-CosA)] + [ (Sin²A) / (SinA-CosA) ]

= [ -(Cos²A) / (SinA-CosA)] + [ (Sin²A) / (SinA-CosA) ]

= [(Sin²A - Cos²A)/ (SinA-CosA) ]

= [ (SinA + CosA)(SinA - CosA) /(SinA-CosA) ]

=[ (SinA + CosA)(SinA - CosA) /(SinA-CosA) ]

➖➖➖➖or ➖➖➖➖

=> (cosA/1 - tan A) +(sin A/1 - cot A)

=>(cosA/1 - sinA/cosA) +(sin A/1 - cosA/sinA)

=>(cosA/(cosA - sinA)/cosA) +(sin A/(sinA - cosA)/sinA)

=>Cos²A/ cosA - sinA + sin²A / sinA - cosA

⭕️+ sign should be converted into -ve⭕️

=> Cos²A/ cosA - sinA (-) sin²A / -sinA +cosA

=>Cos²A/ cosA - sinA (-) sin²A / cosA - sinA

=>Cos²- sin²A/cosA - sinA

✔️✔️we know (a²- b²= (a+b)(a-b)

=>(CosA + sinA)( cosA - sinA) / cos A - sinA

⭕️cos A - sinA gets cancelled out from numenator and denominator ⭕️

=>CosA + sinA

=>SinA + cosA = RHS

\huge\bf{\boxed {\red{\mathfrak{thank \: you :)}}}}
Similar questions