Math, asked by Anzio77, 1 year ago

solve this question

Attachments:

eramneelofer: Answer is 4

Answers

Answered by Mylo2145
84
This question is related to the relation between different trigonometric ratios and does not deal much with the trigonometric identities. These type of questions gradually get simplified in each step and end up in small whole numbers.

 \sf \frac{ \sin25 \degree }{ \cos65 \degree } + \frac{ \cot15 \degree }{ \tan75 \degree } + \frac{2 \cos43 \degree \csc47 \degree }{ \tan10 \degree \tan40 \degree \tan50 \degree \tan80 \degree } \\ \\ \sf \implies \: \frac{ \sin25 \degree }{ \sin(90 \degree - 65 \degree) } + \frac{ \cot15 \degree }{ \cot(90 \degree - 75 \degree ) } + \frac{2 \cos43 \degree \sec(90 \degree - 47 \degree) }{ \tan10 \degree \tan40 \degree \cot(90 \degree - 50 \degree) \cot(90 \degree - 80 \degree) } \\ \\ \sf \implies \: \: \frac{ \cancel{\sin25 \degree}}{ \cancel{\sin25 \degree}} + \frac{ \cancel{ \cot15 \degree}}{ \cancel{ \cot15 \degree}} + \frac{2 \cancel{\cos43 \degree} \times \frac{1}{ \cancel {\cos43 \degree}} }{ \cancel{ \tan10 \degree} \cancel{\tan40 \degree} \cancel{ \cot40 \degree} \cancel{ \cot10 \degree}} \\ \\ \sf \implies \: 1 + 1 + 2 \\ \\ \implies \sf \: 4

Thus, the evaluation of this trigonometric equation is 4.

Mylo2145: thankyou! ❤️
rakeshmohata: awesome dear✌
akhlaka: Fabulous answer sista!❤
RohitSaketi: Good
Anonymous: nice answer di
Anonymous: Ømg Answer Is So Much Beautiful ........luuuv It ❣❣❣ Uh Nailed it❤ Superb_#
Mylo2145: thankyou
Mylo2145: thanks rohit❤
Answered by Anonymous
22

 \leqslant answer \: by \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: akshat \: rajput \geqslant .....
JAI SHREE RAM....
IGNORE IF MY WRITING IS BAD AND FORGIVE ME FOR BAD HANDWRITING
Attachments:
Similar questions