Math, asked by shivam5027, 1 year ago

solve this question​

Attachments:

shivam5027: give me fast
shivam5027: give me fast
shivam5027: give me fast

Answers

Answered by sivaprasath
2

(Instead of θ, I use A)

Answer: 2

Step-by-step explanation:

Given : To find the value of \frac{Cos^3A + Sin^3A}{CosA+SinA} + \frac{Cos^3A - Sin^3A}{CosA - SinA}

Solution :

\frac{Cos^3A + Sin^3A}{CosA+SinA} + \frac{Cos^3A - Sin^3A}{CosA - SinA}

We know that,

a³ - b³ = ( a - b ) ( a² + ab + b² )

a³ + b³ = ( a + b ) ( a² - ab + b² )

Substituting a = Cos A , b = Sin A

We get,

 \frac{(CosA + SinA)(Cos^2A - SinACosA + Sin^2A}{CosA + SinA} + \frac{(CosA - SinA)(Cos^2A + SinACosA + Sin^2A)}{CosA - SinA}

( Cos^2A - SinACosA + Sin^2A ) + ( Cos^2A + SinACosA + Sin^2A )

2 Cos^{2} A + 2 Sin^2A = 2(Sin^{2} A + Cos^2A) = 2(1) = 2  

∴  Sin^2A + Cos^2A = 1

_____________________________

                         Hope it Helps!!


sivaprasath: I just switched that fraction(cosA + SinA) this side, and this one that side (CosA-SinA)
sivaprasath: I just edit it,. reload the page
Similar questions