Math, asked by indiawalayathar, 1 year ago

Solve this question

Attachments:

Answers

Answered by manish5365
1

 \huge \mathfrak \blue{answer : }

GIVEN,

 | \frac{ {x}^{2} + 6 }{5x} |  \leqslant 1

EITER,

  \frac{x {}^{2} + 6 }{ 5x}  \leqslant 1 \\  =  >  {x }^{2}  + 6 \leqslant 5x \\  =  >  {x}^{2}  - 5x + 6 \leqslant 0 \\  =  >  {x}^{2}  - 3x - 2x  + 6 \leqslant 0 \\  =  > (x - 3)(x - 2) \leqslant 0 \\ \\   so \:  \: 2 \leqslant x \leqslant 3

OR,

 -   \frac{ x {}^{2} + 6 }{ 5x}  \leqslant 1 \\  =  > -   {x }^{2}   - 6 \leqslant 5x \\  =  >   - {x}^{2}  - 5x  -  6 \leqslant 0 \\  =  >    {x}^{2}   + 5x + 6 \geqslant 0 \\  =  > (x + 3)(x  + 2) \\  \\ so \:  - 3\leqslant x \leqslant  - 2

SO,

X=[-3,-2]U[2,3]

Similar questions