Math, asked by rohitrzsar22, 2 months ago

solve this question and give the right answer​

Attachments:

Answers

Answered by sivangethakur22
3

Answer:

 log_{x}(8)  =  log_{4}(64)  \\ =  >   log_{x}(8)  =   log_{4}( {8}^{2} )  \\   =  > log_{x}(8)  = 2  log_{4}(8)  \\  =  > x =  \frac{4}{2}  = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

this is the answer.. hope this helps... please thank and mark brainliest

Answered by ApprenticeIAS
41

\rm\red{If \:  log_x 8 = log_4 64  \: then \:  x = }

 \sf\underline{ \underline{identity \: regarding \: logarithm}} :

 \sf log_{a}(b)  = x \:  \: then \\  \\   \sf \boxed{  \boxed{ \sf{a}^{x}  = b}}

 \rm \red{Then}

\rm \: log_x (8) = log_4( 64 ) \:

 \sf \red{We \: know  \: log_4 ( 64) =3}

 \implies \rm  log_{x}(8)  = 3

 \implies \rm  {x}^{3}  = 8

 \implies \rm \:  {x}^{3}  =  {2}^{3}

  \boxed{ \boxed{\sf{ Powers \:  are  \: equal \:  so \:  bases  \: should \:  be \:  equalised}}} \\

 \implies \rm{ x = 2}

 \boxed{ \boxed{\rm{If \:  log_x( 8 )= log_4( 64)  \: then \:  x =2 }}} \\

Similar questions