Math, asked by kiyara07, 1 year ago

solve this question and prove also​

Attachments:

Answers

Answered by kaushik05
29

 \huge \mathfrak{solution}

Given:

x = p \: sec \theta + q  \:tan \theta \:  -  -  -  -  -   (1)

and

y = p \tan \theta + q \sec \theta -  -  -  -  - (2)

To prove:

 \bold{x ^{2}  -  {y}^{2}  =  {p}^{2}  -  {q}^{2} }

Square and subtract both the equation 1) and 2)

  \rightarrow \: {x}^{2}   - {y}^{2}  =  \\ ( {p  \sec \theta + q \tan \theta)}^{2}  - ( {p \tan \theta + q \sec \theta)}^{2}  \\  \\  \rightarrow \:  {x}^{2}  -  {y}^{2}  =  \\  {p}^{2}  {sec}^{2}  \theta +  {q}^{2}  {tan }^{2} \theta - 2p \: sec \theta \: q \: tan \theta \\  - ( {p}^{2}  {tan}^{2}  \theta +  {q}^{2}  {sec}^{2}  \theta + 2p \: tan \theta \: q sec \theta \\  \\

Here ,

2 pq sec@tan@ gets cancel out

 \rightarrow \:  {x}^{2}  -  {y}^{2}  = \\   {p}^{2}  {sec}^{2}  \theta +  {q}^{2}  {tan}^{2}  \theta -  {p}^{2}  {tan }^{2} \theta -  {q}^{2}  {sec}^{2}  \theta \\  \\  \rightarrow \: x {}^{2}  -  {y}^{2}  =  \\  {p}^{2} ( {sec}^{2}  \theta -  {tan}^{2}  \theta) -  {q}^{2} ( {sec}^{2}  \theta -  {tan}^{2} \theta

As we know that :

sec^2 @ - tan^2@ =1

 \rightarrow \:  {x}^{2}  -  {y}^{2}  =  {p}^{2}  -  {q}^{2}

  \huge \boxed{proved}

Similar questions