Math, asked by tharunadithyan, 2 months ago

Solve this question and simplify:-

Attachments:

Answers

Answered by Anonymous
73

Answer :-

Option- D

Given to find the value of :-

 \sqrt{5 \sqrt{2}  - 2 \sqrt{12} }

SOLUTION :-

 \sqrt{12}  \: can \: be \: written \: as \:  \sqrt{2}  \times  \sqrt{6}

 =  \sqrt{5 \sqrt{2} - 2 \sqrt{6}  \sqrt{2}  }

Now , take common √2

 = \:  \sqrt{ \sqrt{2}(5 - 2 \sqrt{6})  }

Now 5-2√6 can be written as in terms of square of a number i.e finding the square root

 =  \sqrt{ \sqrt{2}( 3 + 2 - 2 \sqrt{2} \sqrt{6}  ) }

 =  \sqrt{ \sqrt{2}(( \sqrt{3}) {}^{2}  + ( \sqrt{2} ) {}^{2}    - 2 \sqrt{3} \sqrt{2} ) }

i.e it is in form of (a-b)² = a² -2ab + b²

 =  \sqrt{ \sqrt{2}( \sqrt{3} -  \sqrt{2}) {}^{2}    }

 =  \sqrt{ \sqrt{2} }  \times  \sqrt{( \sqrt{3} -  \sqrt{2} ) {}^{2}  }

 =  \sqrt{ \sqrt{2} } ( \sqrt{3}  -  \sqrt{2})

 \sqrt{2 {}^{ \frac{1}{2} } } ( \sqrt{3}  -  \sqrt{2} )

 = 2 {}^{ \frac{1}{2} \times  \frac{1}{2}  }  (\sqrt{3}  -  \sqrt{2} )

 = 2  {}^{ \frac{1}{4} } ( \sqrt{3}  -  \sqrt{2} )

 \sqrt[4]{2} ( \sqrt{3}  -  \sqrt{2} )

So, the correct option is D

Answered by EmperorSoul
0

Answer :-

Option- D

Given to find the value of :-

 \sqrt{5 \sqrt{2}  - 2 \sqrt{12} }

SOLUTION :-

 \sqrt{12}  \: can \: be \: written \: as \:  \sqrt{2}  \times  \sqrt{6}

 =  \sqrt{5 \sqrt{2} - 2 \sqrt{6}  \sqrt{2}  }

Now , take common √2

 = \:  \sqrt{ \sqrt{2}(5 - 2 \sqrt{6})  }

Now 5-2√6 can be written as in terms of square of a number i.e finding the square root

 =  \sqrt{ \sqrt{2}( 3 + 2 - 2 \sqrt{2} \sqrt{6}  ) }

 =  \sqrt{ \sqrt{2}(( \sqrt{3}) {}^{2}  + ( \sqrt{2} ) {}^{2}    - 2 \sqrt{3} \sqrt{2} ) }

i.e it is in form of (a-b)² = a² -2ab + b²

 =  \sqrt{ \sqrt{2}( \sqrt{3} -  \sqrt{2}) {}^{2}    }

 =  \sqrt{ \sqrt{2} }  \times  \sqrt{( \sqrt{3} -  \sqrt{2} ) {}^{2}  }

 =  \sqrt{ \sqrt{2} } ( \sqrt{3}  -  \sqrt{2})

 \sqrt{2 {}^{ \frac{1}{2} } } ( \sqrt{3}  -  \sqrt{2} )

 = 2 {}^{ \frac{1}{2} \times  \frac{1}{2}  }  (\sqrt{3}  -  \sqrt{2} )

 = 2  {}^{ \frac{1}{4} } ( \sqrt{3}  -  \sqrt{2} )

 \sqrt[4]{2} ( \sqrt{3}  -  \sqrt{2} )

So, the correct option is D

Similar questions