Math, asked by educationmaster37, 11 months ago

solve this question anyone​

Attachments:

Answers

Answered by kailashmeena123rm
1

Answer:

-145/12

Step-by-step explanation:

see attachment

kindly mark me as brainliest

bye

Attachments:
Answered by Anonymous
10

Given :

  • m and n are the zeroes of the polynomial 3x² + 11x - 4 = 0

To Find :

  • Value of \sf{\dfrac{m}{n}+\dfrac{n}{m}}

Solution :

We have given two zeroes of the polynomial. First consider the case of m and then case of n.

In the polynomial, instead of x replace m.

\red{\implies} \sf{3x^2+11x-4=0}

\red{\implies} \sf{3m^2+11m-4=0}

\red{\implies} \sf{3m^2\:+\:12m-1m-4=0}

\red{\implies} \sf{3m(m+4)-1(m+4)=0}

\red{\implies} \sf{(m+4)\:(3m-1) =0}

\red{\implies} \sf{m+4=0\:\:or\:\:3m-1=0}

\red{\implies} \sf{m=-4\:\:or\:\:3m=1}

\sf{m=-4\:or\:m=\dfrac{1}{3}}

\large{\boxed{\sf{\red{m\:=\:-4\:or\:\dfrac{1}{3}}}}}

Now, replace x with n in the polynomial, 3x² + 11x - 4 = 0.

\red{\implies} \sf{3n^2\:+\:11n-4=0}

\red{\implies} \sf{3n^2\:+\:12n-n-4=0}

\red{\implies} \sf{3n(n+4)-1(n+4)=0}

\red{\implies} \sf{(n+4)\:\:(3n-1)\:=0}

\red{\implies} \sf{n+4=0\:\:or\:3n=1}

\red{\implies} \sf{n=-4\:\:or\:\:3n=1}

\red{\implies} \sf{n=-4\:or\:n=\dfrac{1}{3}}

\large{\boxed{\sf{\purple{n\:=\:-4\:or\:\dfrac{1}{3}}}}}

Now, we have the value of m and n.

And we have to find, m/n + n/m.

Substitute, m and n = - 4, 1/3,

\sf{\dfrac{m}{n}\:+\:\dfrac{n}{m}}

\red{\implies}  \frac{ \frac{1}{3} }{ -4}  +  \frac{ \frac{ - 4}{1} }{3}

\red{\implies}  \frac{1}{3}   \times  \frac{1 }{ - 4}  +( -  4) \times  \frac{3}{1}

\red{\implies}  \frac{1}{ - 12}  +  (- 12)

\red{\implies}  \frac{1}{ - 12}  - 12

\red{\implies}  \frac{ - 1 - (144)}{12}

\red{\implies}  \frac{ - 1  -  144}{12}

\red{\implies}  \frac{ - 145}{12}

\large{\boxed{\sf{\purple{Value\:of\:\dfrac{m}{n}+\dfrac{n}{m}\:=\:\dfrac{-145}{12}}}}}

Similar questions