Physics, asked by Sneha110061, 9 months ago

Solve this question. Best explanation will be marked as brainliest.​

Attachments:

Answers

Answered by Vaibhavverma73
6

Answer:

your answer is here☝️☝️

hope it help you❤❤

Attachments:
Answered by TrickYwriTer
5

Explanation:

Given -

  •  \vec\mathsf {A = 3 \hat{i} + 2 \hat{j} \: and \: B  = 2 \hat{i} + 3 \hat{j} -  \hat{k}}

To Find -

  •  \mathsf{A  \: unit  \: vector \:  along  \:  \vec{A} -  \vec{B} }

Now,

 \mathsf{ \vec{A} -  \vec{ B} = (3 \hat{i} + 2 \hat{j}) - (2 \hat{i} + 3 \hat{j} -  \hat{k}) }

 \mathsf{ \vec{A} -  \vec{ B} = (3 \hat{i} + 2 \hat{j} - 2 \hat{i}  -  3 \hat{j}  +   \hat{k} )}

 \mathsf{ \vec{A} -  \vec{ B} =  \hat{i} -  \hat{j} +  \hat{k} }

 \mathsf{ magnitude \: of \:  \vec{A} -  \vec{ B} =  \sqrt{(1) {}^{2} + ( - 1) {}^{2}   + (1) {}^{2} }  }

 \mathsf{ magnitude \: of \: \vec{A} -  \vec{ B} =  \sqrt{3} }

Now,

 \mathsf{Unit  \: vector \:  along  \:  \vec{A}  -  \vec{ B} =  \frac{ \vec{A } -  \vec{B}}{ |  \vec{A} + \vec{B}| }  }

   \mathsf{\frac{ \hat{i} -  \hat{j} +  \hat{k}}{ \sqrt{3} } }

 \mathsf{ \implies \frac{1}{ \sqrt{ 3} } ( \hat{i} -  \hat{j} +  \hat{k})}

Similar questions