Math, asked by TheTotalDreamer, 1 year ago

solve this question by l'hospital rule...

Attachments:

Answers

Answered by Pitymys
0

We have to find the limit   \lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x}  .

Since the limit is in  \frac{0}{0}  form, we can apply L'Hospital's rule.

 \lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x} =  \lim_{x \to 0} \frac{\frac{d}{dx}\log(1-x^2)}{\frac{d}{dx}\log \cos x} \\<br />\lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x} =  \lim_{x \to 0} \frac{\frac{-2x}{1-x^2}}{-\tan x}

The limit is again in  \frac{0}{0}  form, we can apply L'Hospital's rule again,

 \lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x} =  \lim_{x \to 0} \frac{\frac{d}{dx}\frac{-2x}{1-x^2}}{-\frac{d}{dx}\tan x}  \\<br />\lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x} =  \lim_{x \to 0} \frac{\frac{-2}{1-x^2}-\frac{-4x^2}{(1-x^2)^2}}{-\sec^2 x}  \\<br />\lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x} =  \frac{\frac{-2}{1-0}-\frac{-0}{(1-0)^2}}{-\sec^2 0} \\<br />\lim_{x \to 0} \frac{\log(1-x^2)}{\log \cos x} = 2

Similar questions