Math, asked by nikita128, 8 months ago

solve this question don't ans if you don't know ​

Attachments:

Answers

Answered by ts970062
1

hope it's help me❤❤❤❤❤❤❤❤❤❤❤❤

Attachments:
Answered by Anonymous
7

 \implies\sf\large\red{\underline{ }} \frac{ {4}^{n + 1} . \:  {2}^{n} -  {8}^{n}  }{ {2}^{3m} }  =  \frac{3}{8}  \\   \\  \implies\sf\large\red{\underline{ }} \frac{ {( {2}^{2} )}^{n + 1} . {2}^{n} -   { ({2}^{3}) }^{n}   }{ {2}^{3m} }  =  \frac{3}{8}  \\  \\  \implies \sf\large\red{\underline{ }} \frac{( {2}^{2n + 2} . \: {2}^{n})  -  {2}^{3n} }{  {2}^{3m} }  =  \frac{3}{8}  \\  \\  \implies\sf\large\red{\underline{ }} \frac{( {2}^{2n + 2 + n}) -  {2}^{3n}  }{ {2}^{3m} }  =  \frac{3}{8}  \\  \\  \implies\sf\large\red{\underline{ }} \frac{ {2}^{3n + 2}   \:  \: - {2}^{3n}  }{ {2}^{3m} }  =  \frac{3}{8}  \\  \\  \implies\sf\large\red{\underline{ }} \frac{ {2}^{3n} (4 - 1)}{ {2}^{3m} }  =  \frac{3}{8}  \\  \\  \implies\sf\large\red{\underline{ }} \frac{ {2}^{3n}(3) }{ {2}^{3m} }  =  \frac{3}{8}  \\  \\  \implies\sf\large\red{\underline{ }} \frac{ {2}^{3n} }{ {2}^{3m} }  =  \frac{1}{ {2}^{3} }  \\  \\  \implies\sf\large\red{\underline{ }} {2}^{3n} ( {2}^{3} ) =  {2}^{3m}  \\  \\  \implies\sf\large\red{\underline{ }} {2}^{3n + 3}  =  {2}^{3m}  \\  \\  \implies\sf\large\red{\underline{ }}3n + 3 = 3m \\  \\ \sf{ dividing \: by \: 3 \: we \: get \: }.... \\  \\  \implies\sf\large\red{\underline{ n + 1 = m}} \\  \\ (proved)

Similar questions