Math, asked by Anonymous, 10 months ago

solve this question don't answer if u don't know ​

Attachments:

Answers

Answered by Anonymous
17

To Prove :-

LHS = RHS .

Solution :-

Firstly we will solve the LHS of Question ie :-

 \sf{ \implies \:  \frac{1}{1 +  {x}^{b - a} +  {x}^{c - a}  }  +  \frac{1}{1 +  {x}^{a - b} +  {x}^{c - b}  }  +  \frac{1}{1 +  {x}^{b - c}  +  {x}^{a - c} } } \\

Now here we have a formula that we are going to apply over here :-

{\boxed{\boxed{\sf{\implies {a}^{m-n} = \frac{{a}^{m}}{{a}^{n}} }}}} \\

 \sf{ \implies \:  \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } \:  +  \frac{ {x}^{c} }{ {x}^{a} }  }  +  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{b} } +  \frac{ {x}^{c} }{ {x}^{b} }  }  +  \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{c} } +  \frac{ {x}^{a} }{ {x}^{c} }  } } \\

Now taking LCM of the digits which are in the denominator of 1 .

 \sf{ \implies \:  \frac{1}{ \frac{ {x}^{a} +  {x}^{b} +  {x}^{c}   }{ {x}^{a} } }  +  \frac{1}{ \frac{ {x}^{b} +  {x}^{a}   +  {x}^{c} }{ {x}^{b} } }  +  \frac{1}{ \frac{ {x}^{c} +   {x}^{b}    +  {x}^{a} }{ {x}^{c} } } } \\

Now have a look over one more thing :-

 \sf{ \implies \:  \frac{a}{ \frac{x}{y} }  =  \frac{a.y}{x} } \\

Similarly using this concept in our solution also we'll get :-

 \sf{ \implies \frac{1. {x}^{a} }{ {x}^{a}  +  {x}^{b}   +  {x}^{c} }  +  \frac{1. {x}^{b} }{ {x}^{a}  +  {x}^{b} +  {x}^{c}  }  +  \frac{1. {x}^{c} }{ {x}^{a} +  {x}^{b} +  {x}^{c}   } } \\

Now again taking LCM of this above mentioned fraction :-

 \sf{ \implies \:  \frac{ {x}^{a} +  {x}^{b} +  {x}^{c}   }{ {x}^{a} +  {x}^{b} +  {x}^{c}    } = 1 } \\

Our RHS is 1 and also LHS became 1 .

Hence proved.

Answered by Anonymous
12

❏ SolutioN :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\blacksquare\:\:\footnotesize{\underline{\underline{To\: Prove}}}

\footnotesize{\dfrac{1}{1+x^{b-a}+x^{c-a}}+\dfrac{1}{1+x^{a-b}+x^{c-b}}+\dfrac{1}{1+x^{b-c}+x^{a-c}}=1}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

L.H.S.

=\footnotesize{\dfrac{1}{1+x^{b-a}+x^{c-a}}+\dfrac{1}{1+x^{a-b}+x^{c-b}}+\dfrac{1}{1+x^{b-c}+x^{a-c}}}

\footnotesize{\text{Now from the index law we know that}\:\:x^{m-n}=\dfrac{x^m}{x^n}}

=\footnotesize{\dfrac{1}{1+\dfrac{x^b}{x^a}+\dfrac{x^c}{x^a}}+\dfrac{1}{1+\dfrac{x^a}{x^b}+\dfrac{x^c}{x^b}}+\dfrac{1}{1+\dfrac{x^b}{x^c}+\dfrac{x^a}{x^c}}}

=\footnotesize{\dfrac{1}{\dfrac{x^a+x^b+x^c}{x^a}}+\dfrac{1}{\dfrac{x^a+x^b+x^c}{x^b}}+\dfrac{1}{\dfrac{x^a+x^b+x^c}{x^c}}}

=\footnotesize{\dfrac{x^a}{x^a+x^b+x^c}+\dfrac{x^b}{x^a+x^b+x^c}+\dfrac{x^c}{x^a+x^b+x^c}}

=\footnotesize{\dfrac{\cancel{x^a+x^b+x^c}}{\cancel{x^a+x^b+x^c}}}

=\footnotesize{=1=R. H. S. \:(proved)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions