Math, asked by subhashattri07, 1 month ago

solve this question
don't copy from internet please ​

Attachments:

Answers

Answered by sandy1816
4

\huge\underline\bold\red{★Answer★}

 {sin}^{ - 1} (1 - x) - 2 {sin}^{ - 1} x =  \frac{\pi}{2}  \\  =  >  {sin}^{ - 1} (1 - x) - 2 {sin}^{ - 1} x =  {sin}^{ - 1} (1 - x) +  {cos}^{ - 1} (1 - x) \\  =  >  - 2 {sin}^{ - 1} x =  {cos}^{ - 1} (1 - x) \\ put \:  \:  {sin}^{ - 1} x =  \alpha  \:  \:  \:  \: then \:  \:  \:  \: sin \alpha  = x \\ therefore \:  \:  \: \:   \:  =  >  - 2 \alpha  =  {cos}^{ - 1} (1 - x) \\  =  >  \cos( - 2 \alpha )  = (1 - x) \\  =  >  \cos( 2\alpha )  = 1 - x \\  =  > 1 - 2 {sin}^{2}  \alpha  = 1 - x \\  =  > 2 {sin}^{2}  \alpha  = x \\  =  > 2 {x}^{2}  = x \\  =  > 2 {x}^{2}  - x = 0 \\  =  > x(2x - 1) = 0 \\  \: so \:   \: \: x = 0 \:  \:  \:  \: and \:  \:  \:  \: x =  \frac{1}{2}  \\ note \:    \frac{.}{.} \:  \:  \:   x =  \frac{1}{2}  \:    \: doesnot \: satisfy \: the \: equation

Similar questions