Math, asked by Anonymous, 8 months ago

Solve this question (◍•ᴗ•◍)❤
Don't give irrelevant answers , if you do so it will be deleted...​

Attachments:

Answers

Answered by Anonymous
31

 \large\bf\underline{Question:-}

If x- tan²60° + 3sin²60°-3/4tan²60°= 6 ,find the Value of 'x'.

 \large\bf\underline{Given:-}

  • x- tan²60° + 3sin²60°-3/4tan²60°=6

 \large\bf\underline {To \: find:-}

  • Value of x

 \huge\bf\underline{Solution:-}

 \small \longmapsto \rm \: x -  {tan}^{2} 60 \degree + 3 {sin}^{2} 60 \degree -  \frac{3}{4}  {tan}^{2} 60 \degree = 6  ......(i)\\

We know that,

 \leadsto \bf \: tan60 \degree =  \sqrt{3}  \\  \\  \leadsto \bf \: sin60 \degree =  \frac{ \sqrt{3} }{2}

Putting Values of tan 60 and sin 60 in the eq.(i).

 \longmapsto \rm \: x - ( \sqrt{3} ) {}^{2}  + 3( \frac{ \sqrt{3} }{2} ) {}^{2}  -  \frac{3}{4}  (\sqrt{3} ) {}^{2}  = 6 \\  \\ \longmapsto \rm \: x - 3 + 3 \times  \frac{3}{4}  -  \frac{3}{4}  \times 3 = 6 \\  \\ \longmapsto \rm \: x -  3 +  \frac{9}{4}  -  \frac{9}{4}  = 6 \\  \\ \longmapsto \rm \: x - 3  +  \frac{9}{4}  -  \frac{9}{4}  - 6 = 0 \\  \\  \rm \: taking \: LCM\\  \\ \longmapsto \rm \:  \frac{4x - 12 + 9 - 9 - 24}{9}  = 0 \\  \\ \longmapsto \rm \: 4x - 12 - 24 = 0 \times 4 \\  \\ \longmapsto \rm \: 4x - 36 = 0 \\  \\ \longmapsto \rm \: 4x = 36 \\  \\\longmapsto \rm \: x =  \cancel \frac{36}{4}   \\  \\ \longmapsto  \boxed{\bf\:x = 9} \:

So, value of x = 9


RvChaudharY50: Awesome. ❤️
Answered by BrainlyPopularman
28

Question :

  \:  \: { \bold{ If \: \: x -  { \tan }^{2} (60^{ \circ} )+ 3 \sin {}^{2} (60^{ \circ}  )  -  \dfrac{3}{4} { \tan }^{2} (60^{ \circ} ) = 6}} \:  \: , then find the value of 'x' .

ANSWER :

GIVEN :

 \\  \:  \: \longrightarrow \:  \:  { \bold{x -  { \tan }^{2} (60^{ \circ} )+ 3 \sin {}^{2} (60^{ \circ}  )  -  \dfrac{3}{4} { \tan }^{2} (60^{ \circ} ) = 6}} \:  \: \\

TO FIND :

Value of 'x' = ?

SOLUTION :

 \\  \implies  { \bold{x -  { \tan }^{2} (60^{ \circ} )+ 3 \sin {}^{2} (60^{ \circ}  )  -  \dfrac{3}{4} { \tan }^{2} (60^{ \circ} ) = 6}} \:  \: \\

 \\  \implies  { \bold{x + 3 \sin {}^{2} (60^{ \circ}  ) -  { \tan }^{2} (60^{ \circ} )-  \dfrac{3}{4} { \tan }^{2} (60^{ \circ} ) = 6}} \:  \: \\

 \\  \implies  { \bold{x + 3 \sin {}^{2} (60^{ \circ}  ) -  \dfrac{7}{4} { \tan }^{2} (60^{ \circ} ) = 6}} \:  \: \\

• We know that –

 \\   \:  \: \longrightarrow   \:  \: { \bold{ \sin (60^{ \circ}  )=  \dfrac{ \sqrt{3} }{2} }} \:  \: \\

 \\   \:  \: \longrightarrow   \:  \: { \bold{ \tan (60^{ \circ}  )=  { \sqrt{3} } }} \:  \: \\

• So that –

 \\  \implies  { \bold{x + 3  {  \left(\dfrac{ \sqrt{3} }{2}  \right)}^{2} -  \dfrac{7}{4} { \left({ \sqrt{3} } \right)}^{2} = 6}} \:  \: \\

 \\  \implies  { \bold{x + 3  {  \left(\dfrac{ {3} }{4}  \right)}^{} -  \dfrac{7}{4} { \left({ {3} } \right)}^{} = 6}} \:  \: \\

 \\  \implies  { \bold{x +  {  \left(\dfrac{ {9} }{4}  \right)}^{} -  { \left({ { \frac{21}{4} } } \right)} = 6}} \:  \: \\

 \\  \implies  { \bold{x +  {  \left(\dfrac{ {9 - 21} }{4}  \right)}^{}  = 6}} \:  \: \\

 \\  \implies  { \bold{x - {  \cancel \dfrac{ {12} }{4} } = 6}} \:  \: \\

 \\  \implies  { \bold{x - 3 = 6}} \:  \: \\

 \\  \implies  { \bold{x = 6 + 3}} \:  \: \\

 \\  \:  \:  \longrightarrow  \large \:  \:  { \boxed{ \bold{x = 9}}} \:  \: \\

 \\ \rule{220}{2} \\


RvChaudharY50: Perfect. ❤️
Similar questions