Math, asked by ItzAshi, 2 months ago

→ Solve this question

→ Don't Spam

Attachments:

Answers

Answered by Anonymous
102

Given :-

A rectangle ABCD .

To Find :-

The area of the remaining piece of rectangle.

Used Concepts :-

  • Area of Quadrant i.e πr²/4
  • Area of semi circle i.e πr²/2
  • Area of rectangle i.e l × b .

Solution :-

Here , AB = DC = 14 cm

BC = AD = 7 cm

At first , it is clearly understandable that the side BC is the radius of the Quadrant i.e 7cm . Now we knows that all radius are same of a Circle or parts of circle so EC = 7 cm .

Now , Diameter of DGE = DC - EC

=> 14 - 7

=> 7 cm

Let,. Length of ABCD = l = 14 cm

Breadth of ABCD = b = 7 cm

Radius of Quadrant BFEC = r = 7 cm

Radius of DGE = d = 7/2 cm

=> Area of the remaining piece of rectangle = Area of ABCD - Area of BFEC - Area of DGE

=> l × b - πr²/4 - πd²

=> 14 × 7 - 22 × 7 × 7/4 × 7 - 22 × 7 × 7 / 2 × 2 × 2 × 7

=> 98 - 77/2 - 77/4

=> 98 - ( 77/2 + 77/4 )

=> 98 - ( 154 + 77/4 )

=> 98 - 231/4

=> 392 - 231/4

=> 161/4 = 40.25 cm²

Henceforth , Our required answer is 40.25 cm² .

Answered by King412
119

 \\  \bigstar \:   \large \underline{ \underline{\bold{Given :-}}} \\

  • □ABCD is a rectangle.
  • Length of AB = 14 cm and BC = 7 cm

 \\  \bigstar \:   \large \underline{ \underline{\bold{To  \: find :-}}} \\

  • We have to calculate the area of the remaining piece of the rectangle.

 \\  \bigstar \:   \large \underline{ \underline{\bold{Solution:-}}} \\

At first, We have to find the area of Rectangle

So,

 \\  \:  \:  \:  \:  \:  \sf \:  \: Area  \: of  \: Rectangle = length \times breadth \\

 \\  \:  \:  \:  \:  \:  \sf \:   \:  \:  \:  \:  \:  \:  \:     \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = AB × BC \\

 \\  \:  \:  \:  \:  \:  \sf \:   \:  \:  \:  \:  \:  \:  \:     \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 14 \times 7\\

 \\  \:  \:  \:  \:  \:  \sf \:   \:  \:  \:  \:  \:  \:  \:     \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \green{\: = 98 {cm}^{2} }\\

Now, we have to find the area of quarter circle And Area of semi-circle

So,

 \\  \sf \: Area  \: of  \: quarter  \: circle( BFES)=  \frac{1}{4} \pi {(BC)}^{2}  \\

 \\   \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf  \:  \:    \:  \:  \:  \:  \:  \:   \:   =  \frac{1}{4} \pi {(BC)}^{2}  \\

 \\   \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf  \:  \:    \:  \:  \:  \:  \:  \:   \:   =  \frac{1}{4} \pi{(7)}^{2}  \\

 \\   \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf  \:  \:    \:  \:  \:  \:  \:  \:   \:   =  \frac{49}{4} \pi  \\

And ,

 \\  \sf \: Area  \: of  \: semi \: circle( DGE)=  \frac{1}{2} \pi { \bigg( \frac{7}{2}  \bigg)}^{2}  \\

 \\   \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf  \:  \:    \:  \:  \:  \:  \:  \:   \:   =  \frac{1}{2}  \times  { \bigg( \frac{49}{4}  \bigg)}  \pi\\

So,

Area of remaining piece = Area of Rectangle - (Area of quarter circle + Area of semi circle )

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -  \bigg( \frac{49}{4}  \: \pi +  \frac{1 }{2}  \times  \frac{49}{4}  \pi\bigg) \\

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -   \frac{49}{4} \pi\bigg(    1 + \frac{1 }{2}  \bigg) \\

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -   \frac{49}{4} \pi\bigg(    \frac{1 + 2 }{2} \bigg) \\

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -   \frac{49}{4}  \times \pi   \times  \frac{3 }{2}  \\

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -   \frac{49}{4}  \times  \frac{22}{7}  \times  \frac{3 }{2}  \\

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -    \frac{231}{4}    \\

 \\  \sf \:  \:  \:  \:  \:  \implies \: 98 -    57.75    \\

 \\  \sf \:  \:  \:  \:  \:  \implies  \frak{\:    \pink{ 40.25 {cm}^{2}} } \\

Hence, The area of the remaining piece of the rectangle is 40.24 cm².

Similar questions