Math, asked by ravishankar1011, 29 days ago

solve this question,,,,,dont spam ​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ value \: of \: x \\  \\ so \: here \\  \\ tan {}^{ - 1}  \: ( \frac{x - 2}{x - 1} ) + tan {}^{ - 1}  \: ( \frac{x + 2}{x + 1} ) =  \frac{\pi}{4}  \\  \\ tan {}^{ - 1} ( \frac{x - 2}{x  -  1}  \:  +  \:  \frac{x + 2}{x + 1}  \: ) = 45 \\  \\  \frac{x - 2}{x - 1}  +  \frac{x + 2}{x + 1}  =  \frac{45}{tan {}^{ - 1} }  \\  \\   \frac{(x - 2)(x + 1) + (x + 2)(x - 1)}{(x + 1)(x - 1)}  = tan \: 45 \\  \\  \frac{x {}^{2}  + x - 2x - 2 + x {}^{2}  - x + 2x - 2 }{x {}^{2}  - 1}  = 1 \\  \\ 2x {}^{2}  - x + x - 4 = x {}^{2}  - 1 \\  \\ 2x {}^{2}  - x {}^{2}  =  - 1 + 4 \\  \\ x {}^{2}  = 3 \\  \\ taking \: squre \: roots \: on \: both \: sides \\ we \: get \\  \\ x = ± \:  \sqrt{3}

Similar questions