Math, asked by Anonymous, 4 months ago

solve this question fast​

Attachments:

Answers

Answered by laksmiboyni112
0

Answer:

The answer is 495.

Step-by-step explanation:

Please follow me......yar plzzzzzzzzzzzzzz.

Answered by EthicalElite
31

Question :

If a + b + c = 9 and ab + bc + ca = 26, then the value of a³ + b³ + c³ - 3abc is :

  • 27
  • 29
  • 495
  • 729

Answer :

If a + b + c = 9 and ab + bc + ca = 26, then the value of a³ + b³ + c³ - 3abc is 27.

Explanation :

Given :

  • a + b + c = 9
  • ab + bc + ca = 26

To Find :

  • a³ + b³ + c³ - 3abc = ?

Solution :

We know that :

  •  \underline{\boxed{\bf{a^{3} + b^{3} + c^{3} - 3abc = ( a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)}}}

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = ( a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)

Now, we know that :

  •  \underline{\boxed{\bf{a^{2} + b^{2} + c^{2} = (a+b+c)^{2} - 2ab - 2bc - 2ca}}}

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = [ a + b + c][(a+b+c)^{2} - 2ab - 2bc - 2ca - ab - bc - ca]

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = [a + b + c][(a+b+c)^{2} - 3ab - 3bc - 3ca]

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = [ a + b + c][(a+b+c)^{2} - 3(ab + bc + ca)]

Now, we have :

  • a + b + c = 9
  • ab + bc + ca = 26

By filling values :

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = [9][(9)^{2} - 3(26)]

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = (9)(81 - 78)

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = (9)(3)

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = 9 \times 3

 \sf : \implies a^{3} + b^{3} + c^{3} - 3abc = 27

Hence, value of a³ + b³ + c³ - 3abc is 27.

Similar questions