Math, asked by sonusharma45, 5 months ago

solve this question
first change into sin and cos
and then solving with releasizing ​

Attachments:

Answers

Answered by tennetiraj86
1

Answer:

answer for the given problem is given

Attachments:
Answered by udatharajesh69
1

Answer:

 =  \frac{\sec \: 0 - 1 }{ \sec \: 0  +  1}  \:  \: since \:  \sec \: 0 =  \frac{1}{ \cos \: 0 }  \\  =  \frac{ \frac{1}{ \cos \: 0 }   - 1}{ \frac{1}{ \cos \: 0 }   + 1 }  \\  =  \frac{ \frac{1 -  \cos \: 0 }{ \cos \: 0 }  }{ \frac{1 +  \cos \: 0}{ \cos \: 0 }  }  \\  =  \frac{1 -  \cos \: 0}{1  +   \cos \: 0}  \:  \: now \: multiply \: by \: (1 +  \cos \: 0)on \: both \: sides \\  =  \frac{(1 -  \cos \: 0)(1 +  \cos \: 0)}{(1  +   \cos \: 0)(1 +  \cos \: 0)}  \\  =  \frac{1 -  \cos ^{2} \: 0 }{(cos \: 0 {)}^{2} }  \\  =   \frac {\sin{}^{2}  \: 0}{(1 +  \cos \: 0)}

Hence proved

Similar questions