Math, asked by mitkutparsad65paidjl, 1 year ago

solve this question from cha 1 , 9th class​

Attachments:

Answers

Answered by Anonymous
6

\mathrm{Given : x = \dfrac{3 + \sqrt{5}}{2}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{1}{\dfrac{3 + \sqrt{5}}{2}}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{2}{3 + \sqrt{5}}}

\mathrm{Multiply\;and\;Divide\;with\;3 - \sqrt{5}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{2(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5)}}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{2(3 - \sqrt{5})}{(3)^2 - (\sqrt{5})^2}}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{2(3 - \sqrt{5})}{9 - 5}}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{2(3 - \sqrt{5})}{4}}}

\mathrm{\implies \dfrac{1}{x} = \dfrac{3 - \sqrt{5}}{2}}}

\mathrm{Consider : \left(x + \dfrac{1}{x}\right)^2}

\mathrm{\implies \left(x + \dfrac{1}{x}\right)^2 = x^2 + \dfrac{1}{x^2} + 2(x)\left(\dfrac{1}{x}\right)}

\mathrm{\implies \left(x + \dfrac{1}{x}\right)^2 = x^2 + \dfrac{1}{x^2} + 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = \left(x + \dfrac{1}{x}\right)^2 - 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = \left(\dfrac{3 + \sqrt{5}}{2} + \dfrac{(3 - \sqrt{5})}{2}}\right)^2 - 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = \left(\dfrac{3 + \sqrt{5} + 3 - \sqrt{5}}{2}\right)^2 - 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = \left(\dfrac{6}{2}\right)^2 - 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = (3)^2 - 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = 9 - 2}

\mathrm{\implies x^2 + \dfrac{1}{x^2} = 7}


vishal96388: Hiii
vishal96388: I want to say something to u
mitkutparsad65paidjl: no
Similar questions