solve this question from trigonometry
Answers
Answer:
in ∆ABC <A + <B +<C =180°
•°• A + B = 180° - <C
•°• cot (A + B ) = cot( 180° -c )
or, cotA×cotB -1 /cotB + cotA =-cotC
or , cotA × cotB -1 =-cotA×cotB ×cotC
cotA ×cotB + cotB × cotC + cotC × cotA =1
now, from question ..
cotA + cotB + cotC = √3
•°• (cotA + cotB + cotC )² =(√3)²
or , (cot²A + cot²B + cot²C +2cotA ×cotB + cotB ×cotC + cotC ×cotA ) = 3
or ,
cot²A + cot²B + cot²C +2 ×1 =3 -----1)
or, cot²A +cot²B + cot²C -1 =0
or, 2cot²A + 2cot²B + 2cot²C -2 ×1 =0
or, 2cot²A + 2cot²B + 2cot²C -2 (cotA×cotB +cotB×cotC + cotC×cotA ) =0 (from equation 1 )
or,
(cot²A + cot²B - 2cotA×cotB) + (cot²B + cot²C - 2cotB × cotC ) +(cot²A + cot²A -2 cotC × cotA)= 0
or, (cotA-cotB)² +(cotB -cotC)² + ( cotC - cotA)² =0
this only possible ,when ,
(cotA- cotB )² =0
=> cotA =cotB
and, (cotB - cotC )² =0
=> cotB = cotC
and ,
(cotC - cotA )² = 0
=> cotC =cotA
hence ,A=B =C .
therefore , ∆ABC is equilateral triangle ...