Solve this question given in photo.
Attachments:
Answers
Answered by
6
Answer:
0
Step-by-step explanation:
Given: (x - 1/x) = 3
(i)
On cubing both sides, we get
⇒ (x - 1/x)³ = (3)³
⇒ x³ - (1/x³) - 3(x)(1/x)(x - 1/x) = 27
⇒ x³ - (1/x³) - 3(3) = 27
⇒ x³ - (1/x³) = 27 + 9
⇒ x³ - (1/x³) = 36
(ii)
On squaring the equation both sides, we get
(x - 1/x)² = (3)²
⇒ x² + 1/x² - 2 = 9
⇒ x² + 1/x² = 11
Now,
Given: 2(x³ - 1/x³) - 3(x² + 1/x²) - 39
⇒ 2(36) - 3(11) - 39
⇒ 72 - 72
⇒ 0
Hope it helps!
Swetha02:
Brilliant!
Answered by
0
Answer:
0
Step-by-step explanation:
(x - 1/x) = 3
Square both sides,
(x - 1/x)^2 = 3^2
x^2 + 1/x^2 - 2 = 9
x^2 + 1/x^2 = 11
Cubing both sides,
x^3 - 1/x^3 - 3(x - 1/x) = 27
x^3 - 1/x^3 - 3(3) = 27
x^3 - 1/x^3 - 9 = 27
x^3 - 1/x^3 = 36
Substitute in given equation.
2(x^3 - 1/x^3) - 3(x^2 + 1/x^2) - 39
2(36) - 3(11) - 39
72 - 72
0
Hope it helps you.
Similar questions