Math, asked by karmankaur6104, 2 months ago

solve this question given in the image​

Attachments:

Answers

Answered by ydhruv319
0

Answer:

tu mujhe hindi ka matalab hindi me janiye jab mam answer bata de please yaar ye bachi hai kya mam please find attached the following ad listing has ended on June the working class hai kya mam please find attached the following ad listing has ended on

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13} +  {cosec}^{ - 1}\dfrac{13}{12} = \dfrac{\pi}{2}

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  = \dfrac{\pi}{2}  - {cosec}^{ - 1}\dfrac{13}{12}

We know,

 \purple{\boxed{ \sf{ \:  {sec}^{ - 1}x + +  {cosec}^{ - 1}x = \dfrac{\pi}{2}}}}

Using this identity, we get

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  ={sec}^{ - 1}\dfrac{13}{12}

We know,

 \red{ \boxed{ \sf{ \:  {sec}^{ - 1}x =  {cos}^{ - 1}\dfrac{1}{x}}}}

Using this identity, we get

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  ={cos}^{ - 1}\dfrac{12}{13}

We know,

 \green{ \boxed{ \sf \:  {cos}^{ - 1}\dfrac{x}{y} =  {sin}^{ - 1}\dfrac{ \sqrt{ {y}^{2}  -  {x}^{2} } }{ {y}}}}

Using this identity, we get

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  ={sin}^{ - 1}\dfrac{ \sqrt{ {13}^{2}  -  {12}^{2} } }{13}

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  ={sin}^{ - 1}\dfrac{ \sqrt{169  - 144} }{13}

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  ={sin}^{ - 1}\dfrac{ \sqrt{25} }{13}

\rm :\longmapsto\: {sin}^{ - 1}\dfrac{x}{13}  ={sin}^{ - 1}\dfrac{5}{13}

On comparing, we get

\bf\implies \:x = 5

Additional Information :-

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {y}^{2}} + y \sqrt{1 -  {x}^{2} } \bigg)

\rm :\longmapsto\: {sin}^{-1}x - {sin}^{ - 1}y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {y}^{2}} - y \sqrt{1-{x}^{2} } \bigg)

\rm :\longmapsto\: {cos}^{-1}x - {cos}^{ - 1}y={cos}^{ - 1}\bigg(xy+\sqrt{1 -  {y}^{2}} \sqrt{1-{x}^{2} }\bigg)

\rm :\longmapsto\: {cos}^{-1}x + {cos}^{ - 1}y={cos}^{ - 1}\bigg(xy - \sqrt{1 -  {y}^{2}} \sqrt{1-{x}^{2} }\bigg)

\rm :\longmapsto\: {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x + y}{1 - xy} \bigg)

\rm :\longmapsto\: {tan}^{ - 1}x  -  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x  -  y}{1 + xy} \bigg)

Similar questions