Math, asked by rameshkumarkewat8794, 5 months ago

solve this question guys ​

Attachments:

Answers

Answered by sanaalikhan89
1

Answer:

-5^(3-(-7))

-5^(3+7)

-5^10

Hope it helped...........

Answered by MoutithiSarker
0

Step-by-step explanation:

Given :-

Zeroes of quadratic polynomial are -3 and 2

To Find :-

Required quadratic polynomial

Solution :-

We are given, Zeros of quadratic polynomial are -3 and 2.

\boxed{\pink{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\qquad\leadsto\quad \sf -3 +2\\

\qquad\leadsto\quad \sf -1\\

\boxed{\pink{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\qquad\leadsto\quad \sf -3 \times 2\\

\qquad\leadsto\quad \sf -6 \\

Quadratic polynomial :-

x²-(sum of zeros)x+product of zeros 

\qquad\leadsto\quad \sf x²- (-1) x+ (-6)\\

\pink{\qquad\leadsto\quad \sf x²+x -6}\\

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\qquad \qquad \:\bigstar \:\:\underline {\pmb{ \: Know \: More  \:\::-}}\:\\\\

The quadratic formula is _

\boxed{\pmb  {\mathfrak { x = \dfrac{ - b \pm \sqrt{ b^2 - 4ac }}{ 2a} }}}

It can be written as :-

\qquad \pmb  {\mathfrak{ \alpha = \dfrac{-b + \sqrt{b^2 - 4ac }}{ 2a }} }

\qquad \pmb  {\mathfrak{\beta = \dfrac{ - b - \sqrt{ b^2 - 4ac }}{ 2a } }}

Where:-

α , β are the roots of the quadratic equation . b² - 4ac is a discriminate .

The conditions are as follows :-

\qquad ☀️If D = 0

The roots are equal and real .

\qquad ☀️If D > 0

The roots are unequal and rational ( if it is a perfect square )

\qquad ☀️If D > 0

The roots are distinct and irrational ( if it is not a perfect square )

\qquad ☀️If D < 0

The roots are unequal and imaginary .

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Similar questions