Math, asked by Anonymous, 4 months ago

Solve this question guys..​

Attachments:

Answers

Answered by anindyaadhikari13
12

Given To Rationalise:

  •  \sf \dfrac{ \sqrt{8} }{4 + 2 \sqrt{2} }

Solution:

Given,

 \sf  = \dfrac{ \sqrt{8} }{4 + 2 \sqrt{2} }

 \sf  = \dfrac{ \sqrt{4 \times 2} }{2(2 +\sqrt{2} )}

Cancel out 2,

 \sf  = \dfrac{2 \sqrt{2} }{2(2 +\sqrt{2} )}

 \sf  = \dfrac{\sqrt{2} }{(2 +\sqrt{2} )}

Cancel out √2,

 \sf  = \dfrac{\sqrt{2} }{ \sqrt{2} ( \sqrt{2}  +1)}

 \sf  = \dfrac{1}{\sqrt{2}  +1}

Rationalise,

 \sf  = \dfrac{1}{\sqrt{2}  +1} \times  \dfrac{ \sqrt{2} - 1 }{ \sqrt{2}  - 1}

 \sf  =\dfrac{ \sqrt{2} - 1 }{ ( \sqrt{2} + 1)(\sqrt{2}  - 1)}

 \sf  =\dfrac{ \sqrt{2} - 1 }{2 - 1}

 \sf  =\dfrac{ \sqrt{2} - 1 }{1}

 \sf  =\sqrt{2} - 1

Hence, result = √2 - 1

= 1.414 - 1

= 0.414

Answer:

  • Result = √2 - 1
Answered by ThisIsYourFriend
3

Answer is in the attachment

Attachments:
Similar questions