Math, asked by CAPTAINJACKSPARROW98, 16 days ago

solve this question guys,,,,,, see attachment ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm \: f(x) = \bigg[tan\bigg(\dfrac{\dfrac{\pi}{4} + ln(x) }{\dfrac{\pi}{4} - ln(x)} \bigg]^{ log_{x}(e) }  \: is \: continuous \: at \: x = 1 \\

So, it means

\rm \:\displaystyle\lim_{x \to \: 1}\rm  \bigg[tan\bigg(\dfrac{\dfrac{\pi}{4} + ln(x) }{\dfrac{\pi}{4} - ln(x)} \bigg]^{ log_{x}(e) }  = f(1) \\

\rm \:\displaystyle\lim_{x \to \: 1}\rm  \bigg[tan\bigg(\dfrac{\dfrac{\pi}{4} + ln(x) }{\dfrac{\pi}{4} - ln(x)} \bigg]^{ log_{x}(e) }  =  {e}^{k}  \cdots \cdots \: (1) \\

Now, Consider

\rm \:\displaystyle\lim_{x \to \: 1}\rm  \bigg[tan\bigg(\dfrac{\dfrac{\pi}{4} + ln(x) }{\dfrac{\pi}{4} - ln(x)} \bigg]^{ log_{x}(e) } \\

We know,

\boxed{ \rm{ \:tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \: }} \\

So, using this, we get

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[\dfrac{tan\dfrac{\pi}{4} + tan(ln \: x)}{1 - tan\dfrac{\pi}{4} \times tan(ln \: x)}  \bigg]^{ log_{x}(e) } \\

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[\dfrac{1 + tan(ln \: x)}{1 - 1 \times tan(ln \: x)}  \bigg]^{ log_{x}(e) } \\

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[\dfrac{1 + tan(ln \: x)}{1 -  tan(ln \: x)}  \bigg]^{ log_{x}(e) } \\

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[1 + \dfrac{1 + tan(ln \: x)}{1 -  tan(ln \: x)}  - 1 \bigg]^{ log_{x}(e) } \\

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[1 + \dfrac{1 + tan(ln \: x) - 1 + tan(ln \: x)}{1 -  tan(ln \: x)} \bigg]^{ log_{x}(e) } \\

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[1 + \dfrac{2tan(ln \: x)}{1 -  tan(ln \: x)} \bigg]^{ log_{x}(e) } \\

\rm \: =  \: \displaystyle\lim_{x \to \: 1}\rm  \bigg[1 + \dfrac{2tan(ln \: x)}{1 -  tan(ln \: x)} \bigg]^{\dfrac{1 - tan(ln \: x)}{2tan(ln \: x)}  \times \dfrac{2tan(ln \: x)}{1 - tan(ln \: x)}  \times \dfrac{1}{ log_{e}(x) }  } \\

We know,

\boxed{ \rm{ \:\displaystyle\lim_{x \to \: 0}\rm  {\bigg(1 + x\bigg)}^{ \dfrac{1}{x} }  = e\: }} \\

So, using this, we get

\rm \: =  \:  e^{\displaystyle\lim_{x \to \: 1}\rm \dfrac{2tan(ln \: x)}{1 - tan(ln \: x)}  \times \dfrac{1}{ log_{e}(x) }  } \\

\rm \: =  \:  e^{\displaystyle\lim_{x \to \: 1}\rm \dfrac{2tan(ln \: x)}{1 - tan(ln \: x)}  \times \dfrac{1}{ ln \: (x) }  } \\

\rm \: =  \:  e^{2 \: \displaystyle\lim_{x \to \: 1}\rm \dfrac{tan(ln \: x)}{ln \: x}  \times \dfrac{1}{1 - tan( ln \: x) } } \\

\rm \:  =  \:  {e}^{2 \times 1 \times 1}

\rm \:  =  \:  {e}^{2}  \\

So, equation (1), can be rewritten as

\rm \: {e}^{2} =  {e}^{k}  \\

\rm\implies \:k \:  =  \: 2 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by talpadadilip417
2

Step-by-step explanation:

For continuity at x=1, we must have

\[ \begin{aligned} \rm f(1) & \rm=  \lim_{x \rightarrow 1} f(x) \\  \\ & \rm= \lim_{x \rightarrow 1}\left(\tan \left(\frac{\pi}{4}+\ell n x\right)\right)^{1 / \ell n x} \\ \\  & \rm=e^{ \displaystyle \rm\lim_{x \rightarrow 1}\frac{\left(\tan \left(\frac{\pi}{4}+\ln x\right)-1\right)}{\ell n x}}  \\ \\  & \rm=e^{ \displaystyle \rm\lim_{x \rightarrow 1}\frac{1+\tan (\ln x)-(1-\tan (\ln x))}{(1-\tan (\ell n x)) \cdot \ell n x}}  \\ \\  & \rm=e^{ \displaystyle \rm\lim_{x \rightarrow 1} \frac{2 \cdot \tan (\ln x)}{\ln x} \cdot \frac{1}{1-\tan (\ln x)}} \\  \\ & \boxed{\color{magenta}  \rm=e^{2}} \end{aligned} \]

So, equation (1), can be rewritten as

\begin{gathered}\rm \: {e}^{2} = {e}^{k} \\ \end{gathered}

\begin{gathered} \boxed{\red{ \rm\implies \:k \: = \: 2 }}\\ \end{gathered}

Similar questions