solve this question immediately
Answers
Solution :-
We need to prove
cosθ + sinθ = √2 cosθ
Given
cosθ - sinθ = √2 sinθ
Squaring on both sides
→ ( cosθ - sinθ )² = ( √2 sinθ )²
Simplifying using
(a - b)² = a² + b² - 2ab
→ cos²θ + sin²θ - 2cosθsinθ = ( √2 )² sin²θ
→ cos²θ + sin²θ - 2cosθsinθ = 2sin²θ
Assuming as equation 1
Let cosθ + sinθ = x = √2 cosθ
Now, squaring on both sides
→ ( cosθ + sinθ )² = x²
Simplifying using
(a + b)² = a² + b² + 2ab
→ cos²θ + sin²θ + 2cosθsinθ = x²
Assuming as equation 2
Now , equation ( 1 + 2)
→ cos²θ + sin²θ + 2cosθsinθ + cos²θ + sin²θ - 2cosθsinθ = 2sin²θ + x²
→ 2cos²θ + 2sin²θ = 2sin²θ + x²
→ 2cos²θ = x²
→ x = √(2cos²θ)
→ x = √2 cosθ
Here , x = √2 cosθ
→ √2 cosθ = √2 cosθ
LHS = RHS
Hence, proved !!
Answer:
Solution :-
We need to prove
cosθ + sinθ = √2 cosθ
Given
cosθ - sinθ = √2 sinθ
Squaring on both sides
→ ( cosθ - sinθ )² = ( √2 sinθ )²
Simplifying using
(a - b)² = a² + b² - 2ab
→ cos²θ + sin²θ - 2cosθsinθ = ( √2 )² sin²θ
→ cos²θ + sin²θ - 2cosθsinθ = 2sin²θ
Assuming as equation 1
Let cosθ + sinθ = x = √2 cosθ
Now, squaring on both sides
→ ( cosθ + sinθ )² = x²
Simplifying using
(a + b)² = a² + b² + 2ab
→ cos²θ + sin²θ + 2cosθsinθ = x²
Assuming as equation 2
Now , equation ( 1 + 2)
→ cos²θ + sin²θ + 2cosθsinθ + cos²θ + sin²θ - 2cosθsinθ = 2sin²θ + x²
→ 2cos²θ + 2sin²θ = 2sin²θ + x²
→ 2cos²θ = x²
→ x = √(2cos²θ)
→ x = √2 cosθ
Here , x = √2 cosθ
→ √2 cosθ = √2 cosθ
LHS = RHS
Hence, proved !!