solve this question immediately
Attachments:
Answers
Answered by
4
Solution :-
We need to prove
(1 + 1/tan²A)(1 + 1/cot²A) = 1/(cos²A - cos⁴A)
Firstly taking LHS & simplifying
→ [ ( 1 + tan²A )/tan²A ] [ ( 1 + cot²A )/cot²A ]
As we know that
• 1 + tan²A = sec²A
• 1 + cot²A = cosec²A
→ [ sec²A/tan²A ] [ cosec²A/cot²A ]
Substituting
• sec²A = 1/cos²A
• tan²A = sin²A/cos²A
• cosec²A = 1/sin²A
• cot²A = cos²A/sin²A
→ [ ( 1/cos²A )/( sin²A/cos²A ) ] [ ( 1/sin²A )/( cos²A/sin²A ) ]
→ ( 1/sin²A ) ( 1/cos²A )
→ 1/sin²A cos²A
Now , substituting
• sin²A = 1 - cos²A
→ 1/( 1 - cos²A )cos²A
→ 1/cos²A - cos⁴A
Now , comparing with RHS
LHS = RHS
Hence , proved !
Similar questions