Math, asked by subbu2004, 1 year ago

solve this question immediately

Attachments:

Answers

Answered by Anonymous
0
heyyy frnds Ur answer is.....


(a-b)²+ (b-c)²+ (c-a)²

subbu2004: No, it should come 3
Anonymous: i know
subbu2004: how the answer is 3
Answered by sivaprasath
1
Solution :

_____________________________________________________________

Given :

To find the value of :

 \frac{(a - b)^3 + (b- c)^3 + (c - a)^3}{(a-b)(b-c)(c-a)}

_____________________________________________________________

We know the identity that,

(a - b)³ = a³ - 3a²b + 3ab² - b³

Hence,

Applying the identity with the values

we get,


(a - b)³ = a³ - 3a²b + 3ab² - b³,

(b - c)³ = b³ - 3b²c + 3bc² - c³,

(c - a)³ = c³ - 3c²a + 3ca² - a³

Hence,

(a - b)³ + (b - c)³ + (c - a)³ = a³ - 3a²b + 3ab² - b³ + b³ - 3b²c + 3bc² - c³ + c³ -3c²a +3ca² - a³

⇒ a³ - a³ + b³ - b³ + c³ - c³ -3a²b + 3ab² -3b²c + 3bc² + 3c²a + 3ca²

⇒ - 3ab(a-b) - 3bc(b - c) - 3ac(c - a)

⇒ -3(a²b + ab² + b²c + bc² + c²a + ca²)

Hence,


 \frac{(a - b)^3 + (b- c)^3 + (c - a)^3}{(a-b)(b-c)(c-a)}

 \frac{-3(a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2)}{(a-b)(b-c)(a-c)}

 \frac{-3ab}{(b-c)(c-a)} +  \frac{-3bc}{(a-b)(c-a)} +  \frac{-3ac}{(a-b)(b-c)}

-3( \frac{ab}{(b-c)(c-a)} +  \frac{bc}{(a-b)(c-a)} +  \frac{ac}{(a-b)(b-c)}  )

 \frac{-3(a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2)}{(-a^2b - ab^2 - b^2c - bc^2 - c^2a - ca^2)}

 \frac{-3(a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2)}{-((a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2))}

⇒ 3,.

_____________________________________________________________

                                  Hope it Helps !!

⇒ Mark as Brainliest,.



subbu2004: someone told me that the answer is 3
sivaprasath: may be, if I expand the last line it may come,.
sivaprasath: Yeah, it comes,.
Similar questions