Math, asked by BazalledBlue, 16 days ago

solve this question
no irrelevant answers​

Attachments:

Answers

Answered by ProximaNova
2

Step-by-step explanation:

For proving collinearity, we need to prove AB + BC = AC

Distance formula is,

\boxed{\sf \bf D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}

Finding AB:

\sf \bf : \longmapsto AB = \sqrt{(a-b)^2 + (b+c - c - a)^2}

\sf \bf : \longmapsto AB = \sqrt{(a-b)^2 + (b-a)^2}

\sf \bf : \longmapsto AB = \sqrt{2(a-b)^2}

\sf \bf : \longmapsto AB = \pm \sqrt2(a-b)

Finding BC:

\sf \bf : \longmapsto BC = \sqrt{(b-c)^2 + (c+a-a-b)^2}

\sf \bf : \longmapsto BC = \sqrt{(b - c)^2 + (c - b)^2}

\sf \bf : \longmapsto BC = \sqrt{2(b-c)}

\sf \bf : \longmapsto BC = \pm \sqrt2(b-c)

Finding AC:

\sf \bf : \longmapsto AC = \sqrt{(a-c)^2+ (b+c-a-b)^2}

\sf \bf : \longmapsto AC = \sqrt{(a-c)^2 + (c-a)^2}

\sf \bf : \longmapsto AC = \sqrt{2(a-c)^2}

\sf \bf : \longmapsto AC = \pm \sqrt2(a-c)

Now checking the condition of collinearity

\sf \bf : \longmapsto AB + AC = \pm \sqrt2 [a-b+b-c]

\sf \bf : \longmapsto AB + AC = \pm \sqrt2(a-c)

Clearly, AB + BC = AC

This proves that A,B,C are collinear

Similar questions