Math, asked by sargam7880, 4 months ago

solve this question no spam .​

Attachments:

Answers

Answered by mathdude500
0

Answer :- (i)

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\sf{length \: of \: cuboid \:  = 4x} \\ &\sf{breadth \: of \: cuboid \:  = 3x}\\ &\sf{height \: of \: cuboid \:  = 2x} \end{cases}\end{gathered}\end{gathered}

Surface Area = 2548

We know,

{{ \boxed{{\bold\green{Total  \: Surface \:  Area_{(Cuboid)}\: = 2(lb + bh + hl)}}}}}

  \sf \: 2548 = 2((4x)(3x) + (3x)(2x) + (2x)(4x))

:  \implies  \sf \: 2548 = 2(12 {x}^{2}  +  {6x}^{2}  +  {8x}^{2} )

:  \implies  \sf \: 2548 = 2(26 {x}^{2} )

:  \implies   \sf \: 2548 =  {56x}^{2}

:  \implies  \sf \:  {x}^{2}  = \dfrac{2548}{56}

:  \implies  \bf \:  {x}^{2}  = 49

:  \implies  \bf \: x = 7

\begin{gathered}\begin{gathered}\bf \: Hence -  \begin{cases} &\sf{length \: of \: cuboid \:  = 4 \times 7 = 28 \: cm} \\ &\sf{breadth \: of \: cuboid \:  = 3 \times 7 = 21 \: cm}\\ &\sf{height \: of \: cuboid \:  = 2 \times 7 = 14 \: cm} \end{cases}\end{gathered}\end{gathered}

 \boxed{ \red{ \bf \: Volume_{(cuboid)} =l \times b \times h}}

:  \implies  \tt \: Volume_{(cuboid)} = \: 28 \times 21 \times 14

:  \implies  \boxed{ \pink{ \bf \: Volume_{(cuboid)} = \: 8232 \:  {cm}^{3} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answer :- (ii)

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\sf{length \: of \: cuboid \:  = 4x} \\ &\sf{breadth \: of \: cuboid \:  = 3x}\\ &\sf{height \: of \: cuboid \:  = 2x} \end{cases}\end{gathered}\end{gathered}

Volume of Cuboid = 3000

We know that

 \boxed{ \red{ \bf \: Volume_{(cuboid)} =l \times b \times h}}

:  \implies  \bf \: 3000 = (4x)(3x)(2x)

:  \implies  \bf \: 3000 =  {24x}^{3}

:  \implies  \bf \:  {x}^{3}  = 125

:  \implies  \bf \: x = 5

\begin{gathered}\begin{gathered}\bf Hence -  \begin{cases} &\sf{length \: of \: cuboid \:  = 4 \times 5 = 20 \: cm} \\ &\sf{breadth \: of \: cuboid \:  = 3 \times 5 = 15 \: cm}\\ &\sf{height \: of \: cuboid \:  = 2 \times 5 = 10 \: cm} \end{cases}\end{gathered}\end{gathered}

{{ \boxed{{\bold\green{Total  \: Surface \:  Area_{(Cuboid)}\: = 2(lb + bh + hl)}}}}}

\bf \: TSA_{(cuboid)} = 2(20 \times 15 + 15 \times 10 + 20 \times 10)

:  \implies  \bf \: TSA_{(cuboid)} = 2(300 + 150 + 200)

:  \implies  \bf \: TSA_{(cuboid)} = 1300 \:  {cm}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions