Math, asked by Anonymous, 20 days ago

Solve this Question :
No Spam --

Chapter : Integration​

Attachments:

Answers

Answered by mathdude500
3

Given Question :-

Evaluate

\rm \:  \displaystyle\int\rm  \frac{2}{ {(2 - x)}^{2} }  \: \sqrt[3]{\dfrac{2 - x}{2 + x} }  \: dx \\

\large\underline{\sf{Solution-}}

Given integral is

\rm \:  \displaystyle\int\rm  \frac{2}{ {(2 - x)}^{2} }  \: \sqrt[3]{\dfrac{2 - x}{2 + x} }  \: dx \\

\rm \:   =  \: 2\displaystyle\int\rm  \frac{1}{ {(2 - x)}^{2} }  \: \sqrt[3]{\dfrac{2 - x}{2 + x} }  \: dx \\

To solve this integral, we use method of Substitution.

So, Substitute

\rm \: \dfrac{2 + x}{2 - x}  = y \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{(2 - x)(1 + 0) - (2 + x)(0 - 1)}{ {(2 - x)}^{2} }  = \dfrac{dy}{dx}

\rm \: \dfrac{(2 - x) + (2 + x)}{ {(2 - x)}^{2} }  = \dfrac{dy}{dx}  \\

\rm \: \dfrac{4}{ {(2 - x)}^{2} }  = \dfrac{dy}{dx}  \\

\rm \: \dfrac{dx}{ {(2 - x)}^{2} }  = \dfrac{dy}{4}  \\

So, on substituting these values, the above integral can be rewritten as

\rm \:  =  \: 2 \displaystyle\int\rm  \sqrt[3]{ \frac{1}{y} } \:  \frac{dy}{4}

\rm \:  =  \: \dfrac{1}{2}  \displaystyle\int\rm {\bigg(y \bigg) }^{  \: - \:  \dfrac{1}{3} }  \: dy \:  \\

We know,

\boxed{ \rm{ \: \displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{1}{2} \dfrac{{\bigg(y \bigg) }^{  \: - \:  \dfrac{1}{3}  + 1}}{ - \dfrac{1}{3}  + 1}  + c\\

\rm \:  =  \: \dfrac{1}{2} \dfrac{{\bigg(y \bigg) }^{\dfrac{2}{3}}}{ \dfrac{2}{3}}  + c\\

\rm \:  =  \: \dfrac{3}{4}{\bigg(y \bigg) }^{\dfrac{2}{3} } + c \\

\rm \:  =  \: \dfrac{3}{4}{\bigg(\dfrac{2 + x}{2 - x}  \bigg) }^{\dfrac{2}{3} } + c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions