Math, asked by laxmanpathi945, 10 months ago

Solve this question No spamming​

Attachments:

Answers

Answered by abhi569
2

Answer:

(a)

Step-by-step explanation:

 ⇒ x + y = p

⇒ ( x + y )^3 = p^3

      ( x + y )^3 = x^3 + y^3 + 3xy( x + y )

⇒ x^3 + y^3 + 3xy( x + y ) = p^3

        xy = p  ;  x + y = p

⇒ x^3 + y^3 + 3q(p) = p^3

x^3 + y^3 = p^3 - 3pq

        In question :

⇒ 1/x^3 + 1/y^3

⇒ ( y^3 + x^3 ) / ( xy )^3

       x^3 + y^3 = p^3 - 3pq

            xy = q

⇒ ( p^3 - 3pq ) / q^3

⇒ p( p^2 - 3q ) / q^3

    Option (a)

Answered by rocky200216
2

Answer:-

a) \frac{p}{ {q}^{3} }  \times ( {p}^{2}  - 3q)

Given,

x + y = p

and xy = q .

To find:-

 \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }

Solution:-

 \frac{1}{ {x}^{3} }  +  \frac{1}{ {y}^{3} }  \\  =  \frac{ {y}^{3} +  {x}^{3}  }{ {x}^{3}  \times  {y}^{3} }  \\  =  \frac{ {(x + y)}^{3}  - 3xy \times (x + y)}{ {(xy)}^{3} }  \\  =   \frac{ {p}^{3} - 3pq }{ {q}^{3} }

 \frac{p}{q}  \times ( {p}^{2}  - 3q)

Hope it's helpful to you.

Please mark as Brainliest answer.

(•‿•)(・∀・)◉‿◉。◕‿◕。

Similar questions