Math, asked by laxmanpathi945, 11 months ago

Solve this question No SPAMMING​

Attachments:

Answers

Answered by DrNykterstein
6

Let,

x =  \sf \sqrt{12 + \sqrt{12 + \sqrt{12 + }}}... \infty

Now,

</p><p> \sf \rightarrow \quad x =  \sqrt{12 +  \sqrt{12 +  \sqrt{12+} }  }... \infty  \\  \\ \sf \rightarrow \quad x =  \sqrt{12 + x}  \\  \\  \sf \quad \because \: x =  \sqrt{12 +  \sqrt{12 +  \sqrt{12 + } } } ... \infty  \\  \\ \sf \rightarrow \quad x =  \sqrt{12 + x}  \\  \\  \sf  \: square \: both \: sides \\  \\ \sf \rightarrow \quad  {x}^{2} = 12 + x  \\  \\ \sf \rightarrow \quad  {x}^{2}  - x - 12 = 0 \\  \\ \sf \rightarrow \quad  {x}^{2}  - 4x + 3x - 12 = 0 \\  \\ \sf \rightarrow \quad x(x - 4) + 3(x - 4) = 0 \\  \\ \sf \rightarrow \quad (x - 4)(x  + 3) = 0 \\  \\ \sf \rightarrow \quad x = 4,  \:  - 3 </p><p>

-3 is neglected because It is negative which is out of the range of the square root function.

So,

x = 4

Hence, Option (D) is correct.

Similar questions