Math, asked by shabinakhanimran, 11 months ago

Solve this question... Of ncert class 10 page 214

Attachments:

Answers

Answered by Anonymous
5

</p><p>&lt;!DOCTYPE html &gt;</p><p>&lt;html&gt;</p><p>&lt;body </p><p>style="background-color:pink;"&gt;</p><p>&lt;h1&gt;&lt;/h1&gt;</p><p>&lt;p&gt;&lt;/p&gt;</p><p>&lt;/body &gt;</p><p>&lt;/html&gt;</p><p>

\huge{\boxed{\boxed{\sf{\green{Hello Buddy }}}}}

↪️Since , tangents drawn from an external point to a circle are equal.

>•• AP = AC

↪️Thus, in ∆APO and ∆ ACO,

>••. AP = AC

AO = AO ( Common )

OP = OC ( Radius of circle )

↪️So , by SSS criterion of congruence , we have :

∆APO ~= ∆ ACO.

( ~= Congruency sign )

=> angle PAO = angle OAC

=> angle PAC = 2angle CAO

↪️Similarly , we can prove that ;

angle CBO = angle OBQ

=> angle CBQ = 2angle CBO

↪️Since , XY || X'Y'

angle PAC + angle QBC = 180°.

[ Sum of interior angles on the same side

of transversal is 180°]

=> 2angle CAO + 2angle CBO = 180°

=> angle CAO + angle CBO = 90° .......(i)

↪️In ∆ AOB ,

=> angle CAO + angle CBO + angle AOB = 180° =>angle CAO + angle CBO = 180° - angle AOB ..(ii)

Since , from equation (i) and (ii) , we get ;

180° - angle AOB = 90°

angle AOB = 90 °

&lt;marquee&gt;

_____________________________________

✍✍✍✍➡️Hope..it..helps⬅️✍✍✍✍

______________________________________

# BAL

# Answer with quality

Similar questions