Solve this question of sequence and series
Answers
Given that,
We know, If a, b, c are in AP, then 2b = a + c
So, using this identity, we get
We know,
and
So, using these results, we get
can be further rewritten as
Taking log on both sides, we get
Hence, Option (2) is correct.
Additional Information :-
Answer:
\large\underline{\sf{Solution-}}
Solution−
Given that,
\begin{gathered}\rm \: 1, \: log_{9}( {3}^{1 - x} + 2), \: log_{3}(4. {3}^{x} - 1) \: are \: in \: AP \\ \end{gathered}
1,log
9
(3
1−x
+2),log
3
(4.3
x
−1)areinAP
We know, If a, b, c are in AP, then 2b = a + c
So, using this identity, we get
\begin{gathered}\rm \: 2log_{9}( {3}^{1 - x} + 2) \: = \:1 + log_{3}(4. {3}^{x} - 1) \\ \end{gathered}
2log
9
(3
1−x
+2)=1+log
3
(4.3
x
−1)
\begin{gathered}\rm \: 2log_{ {3}^{2} }( {3}^{1 - x} + 2) \: = \: log_{3}(3) + log_{3}(4. {3}^{x} - 1) \\ \end{gathered}
2log
3
2
(3
1−x
+2)=log
3
(3)+log
3
(4.3
x
−1)
We know,
\begin{gathered}\boxed{ \rm{ \: log_{ {a}^{x} }( {b}^{y} ) = \frac{y}{x} log_{a}(b) \: }} \\ \end{gathered}
log
a
x
(b
y
)=
x
y
log
a
(b)
and
\begin{gathered}\boxed{ \rm{ \:logx + logy = log(xy) \: }} \\ \end{gathered}
logx+logy=log(xy)
So, using these results, we get
\begin{gathered}\rm \: 2 \times \frac{1}{2} log_{3}( {3}^{1 - x} + 2) \: = \: log_{3}3[4. {3}^{x} - 1] \\ \end{gathered}
2×
2
1
log
3
(3
1−x
+2)=log
3
3[4.3
x
−1]
\begin{gathered}\rm \: log_{3}( {3}^{1 - x} + 2) \: = \: log_{3}[12. {3}^{x} - 3] \\ \end{gathered}
log
3
(3
1−x
+2)=log
3
[12.3
x
−3]
\begin{gathered}\rm \: {3}^{1 - x} + 2 \: = \: 12. {3}^{x} - 3\\ \end{gathered}
3
1−x
+2=12.3
x
−3
can be further rewritten as
\begin{gathered}\rm \:\dfrac{3}{ {3}^{x} } \: = \: 12. {3}^{x} - 5\\ \end{gathered}
3
x
3
=12.3
x
−5
\begin{gathered}\rm \: \: 12. ({3}^{x})^{2} - 5.{3}^{x} = 3\\ \end{gathered}
12.(3
x
)
2
−5.3
x
=3
\begin{gathered}\rm \: \: 12. ({3}^{x})^{2} - 5.{3}^{x} - 3 = 0\\ \end{gathered}
12.(3
x
)
2
−5.3
x
−3=0
\begin{gathered}\rm \: \: 12. ({3}^{x})^{2} - 9.{3}^{x} + 4.{3}^{x} - 3 = 0\\ \end{gathered}
12.(3
x
)
2
−9.3
x
+4.3
x
−3=0
\begin{gathered}\rm \: \: 3. {3}^{x}(4.{3}^{x} - 3) + (4.{3}^{x} - 3) = 0\\ \end{gathered}
3.3
x
(4.3
x
−3)+(4.3
x
−3)=0
\begin{gathered}\rm \: \: (4.{3}^{x} - 3)(3.{3}^{x} + 1) = 0\\ \end{gathered}
(4.3
x
−3)(3.3
x
+1)=0
\begin{gathered}\rm\implies \:{3}^{x} = \dfrac{3}{4} \: \: or \: \: {3}^{x} = - \: \dfrac{1}{3} \: \{rejected \: as \: {3}^{x} > 0 \} \\ \end{gathered}
⟹3
x
=
4
3
or3
x
=−
3
1
{rejectedas3
x
>0}
\begin{gathered}\rm \: {3}^{x} = \dfrac{3}{4} \\ \end{gathered}
3
x
=
4
3
Taking log on both sides, we get
\begin{gathered}\rm \:log{3}^{x} = log\bigg(\dfrac{3}{4}\bigg) \\ \end{gathered}
log3
x
=log(
4
3
)
\begin{gathered}\rm \: xlog3 = log3 - log4 \\ \end{gathered}
xlog3=log3−log4
\begin{gathered}\rm \: x = \dfrac{log3}{log3} - \dfrac{log4}{log3} \\ \end{gathered}
x=
log3
log3
−
log3
log4
\begin{gathered}\bf\implies \:x = 1 - log_{3}(4) \\ \end{gathered}
⟹x=1−log
3
(4)
Hence, Option (2) is correct.
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x) = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} ) = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} ) = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b) = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx} = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx} = {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\ \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★log
x
(x)=1
★log
x
(x
y
)=y
★log
x
z
(x
w
)=
z
w
★log
a
(b)=
loga
logb
★e
logx
=x
★e
ylogx
=x
y
★log1=0