Math, asked by kumarankit22125, 11 months ago

solve this question please ???​

Attachments:

Answers

Answered by Anonymous
20

Answer:

HEY FRIEND HERE'S YOUR ANSWER

Step-by-step explanation:

PLEASE MARK ME AS BRAINLIEST

Attachments:
Answered by Anonymous
20

Given LHS :

  • \sf{(1+cot\:\theta\:+\:cosec\:\theta\:)(1+cot\:\theta\:-\:cosec\:\theta)}

Given RHS :

  • \sf{2cot\:\theta}

To Prove :

  • \sf{(1+cot\:\theta\:+\:cosec\:\theta\:)(1+cot\:\theta\:-\:cosec\:\theta)\:=\:2\:cot\:\theta}

Proof :

Taking LHS,

\sf{(1+cot\:\theta\:+\:cosec\:\theta\:)(1+cot\:\theta\:-\:cosec\:\theta)}

\sf{\Big(1\:+\:\dfrac{cos\:\theta}{sin\:\theta}\:+\:\dfrac{1}{sin\:\theta}\Big)\:\Big(1\:+\:\dfrac{cos\:\theta}{sin\:\theta}\:-\:\dfrac{1}{sin\:\theta}\Big)}

\sf{\Big[\because\:cot\:\theta\:=\:\dfrac{cos\:\theta}{sin\:\theta}\:\:;\:\:cosec\:\theta\:=\:\dfrac{1}{sin\:\theta}\Big]}

\sf{\big(\:1\:+\:\dfrac{cos\:\theta\:+\:1}{Sin\:\theta}\big)\:\big(\:1\:+\:\dfrac{cos\:\theta\:-\:1}{sin\:\theta}\big)}

\sf{\big(\dfrac{sin\:\theta\:+\:cos\:\theta\:+\:1}{sin\:\theta}\big)\:\big(\dfrac{sin\:\theta\:+\:cos\:\theta\:-\:1}{sin\:\theta}\big)}

\sf{\dfrac{(sin\:\theta\:+\:cos\:\theta)^2\:-\:(1)^2}{sin\:^2\:\theta}}

\sf{\dfrac{sin^2\:\theta\:+\:2\:sin\:\theta\:\times\:cos\:\theta\:-\:1}{sin^2\:\theta}}

\sf{\big[\because\:(a+b)^2\:=\:a^2\:+\:2ab\:+\:b^2)\:\big]}

\sf{\dfrac{sin^2\:\theta\:+\:cos^2\:\theta\:+\:2\:sin\:\theta\:\times\:cos\:\theta\:-\:1}{sin^2\:\theta}}

\sf{\dfrac{1\:+\:2\:sin\:\theta\:\times\:cos\:\theta\:-\:1}{sin^2\:\theta}}

\sf{\big[\because\:sin^2\:\theta\:+\:cos^2\:\theta\:=\:1\:\big]}

\sf{\dfrac{2\:sin\:\theta\:\times\:cos\:\theta}{sin^2\:\theta}}

\sf{\dfrac{2\:\cos\:\theta\:}{sin\:\theta}}

\sf{2\:cot\:\theta}

\large{\boxed{\bold{(1+cot\:\theta\:+\:cosec\:\theta\:)(1+cot\:\theta\:-\:cosec\:\theta\:=\:2\:cot\:\theta}}}

Similar questions