Math, asked by shehiwnemisnskkhsnd, 9 months ago

solve this question please​

Attachments:

Answers

Answered by Mysterioushine
6

\huge{\mathcal{\underline{\pink{Solution:-}}}}

12. \:  \: 3(t - 3) = 5(2t - 1) \\  \\ =  >  3t - 9 = 10t - 5 \\  \\  =  > 7t =  - 4 \\  \\  =  > t =  \frac{ - 4}{7}  \\  \\  \\ 13. \:  \:  \:  \frac{5(1 - x) + 3(1 + x)}{1 - x}  = 8 \\  \\    =  > 5 - 5x + 3 + 3x = 8 - 8x \\  \\  =  > 8 - 2x = 8 - 8x \\  \\  =  >6 x = 0 \\  \\  =  > x = 0

Answered by BloomingBud
6

12) Solve 3(t - 3) = 5(2t - 1)

⇒ 3 × (t) - 3 × (3) = 5 × (2t) - 5 × (1)

⇒ 3t - 9 = 10t - 5

⇒ 3t - 10t =  - 5 + 9

[Taking 10t to LHS and (-9) to RHS]

⇒ -7t = 4

⇒ t = \boxed{ \frac{-4}{7}}

Verification:

LHS = 3(t - 3)

= 3(\frac{-4}{7} - 3)

= 3(\frac{-4-21}{7})\ [ \therefore Taking\ LCM = 7]

= \boxed{\frac{-75}{7}}

RHS = 5(2t - 1)

= 5(2 \times \frac{-4}{7} - 1)

= 5( \frac{-8}{7} - 1)

= 5( \frac{-8-7}{7})\ [ \therefore Taking\ LCM = 7]

= 5( \frac{-15}{7})

=\boxed{ \frac{-75}{7}}

Hence, LHS = RHS (verified)

.

13) Solve \bf \frac{5(1-x)+3(1+x)}{1-x}=8

\implies \frac{(5 \times 1 - 5 \times x) + (3 \times 1 + 3 \times x)}{1-x} = 8

\implies \frac{(5 - 5x) + (3 + 3x)}{1-x} = 8

\implies (5 - 5x) + (3 + 3x) = 8(1-x)

[Taking (1-x) to RHS]

\implies 5+3 -5x+3x=8-8x

\implies 8 -2x=8-8x

\implies 8x -2x=8-8

\implies 6x =0

\implies \boxed{x =0}

Verification:

LHS = \frac{5(1-0)+3(1+0)}{1-0}

= \frac{5(1)+3(1)}{1}

= 5+3 = 8 = RHS

Hence, RHS = LHS

Verifired.

Similar questions