Math, asked by arpitapriya399, 8 months ago

solve this question please.​

Attachments:

Answers

Answered by playerpubglite35
2

5......................

Answered by spacelover123
4

Let's solve your equation step-by-step.

\sf \dfrac{2-9z}{17-4z} =\dfrac{4 }{5}

Step 1: Cross-multiply.

\sf \dfrac{2-9z}{17-4z} =\dfrac{4 }{5}

\sf (2- 9z)\times(5)=4\times (17-4z)

\sf -45z+10= -16z+68

\rule{300}{0.5}

Step 2: Add 16z to both sides.

\sf -45z+10+16z = -16z+68+16z

\sf -29z+10=68

\rule{300}{0.5}

Step 3: Subtract 10 from both sides.

\sf -29z+10-10=68-10

\sf -29z=58

\rule{300}{0.5}

Step 4: Divide both sides by -29.

\sf \dfrac{-29z}{-29} = \dfrac{58}{-29}

\sf z=-2

\rule{300}{0.5}

Verification if z = -2

\sf \dfrac{2-(9\times -2) }{17-(4\times -2) } =\dfrac{4 }{5}

\sf \dfrac{2-(-18) }{17-(-8) } =\dfrac{4 }{5}

\sf \dfrac{2+18 }{17+8 } =\dfrac{4 }{5}

\sf \dfrac{20}{25} =\dfrac{4}{5}

\sf \dfrac{20 \div 5 }{25 \div 5 } = \dfrac{4}{5}

\sf \dfrac{4}{5}=\dfrac{4}{5}

\rule{300}{0.5}

\sf \bf  \therefore  z=-2 \ in \ the \ equation \ =>   \dfrac{2-9z}{17-4z} =\dfrac{4 }{5}

Similar questions